Соотношение бензина и воздуха в двс: Соотношение бензина и воздуха в двс

Содержание

Соотношение бензина и воздуха в двс

Оптимальное соотношение бензина и воздуха в двигателе

В данной статье расскажем, что такое бедная или богатая смесь бензина и воздуха. Какие пропорции оптимальны для работы двигателя. Мелкодисперсная смесь атмосферного воздуха и жидкого топлива с небольшим включением парообразной фазы называется топливно-воздушной смесью или ТВС. Именно она, сгорая в цилиндрах двигателя, придает поступательное движение поршням и обеспечивает движение автомобиля.

В зависимости от своей структуры, ТВС может быть гомогенной (однородной по своему составу), или обладать слоистой структурой. В зависимости от вида нагрузки, заложенных параметров экономии топлива, и требуемого состава выхлопных газов (содержания вредных веществ и окислов азота), система впрыска топлива самостоятельно выбирает наиболее оптимальную структуру топливно-воздушной смеси.

СМЕСЕОБРАЗОВАНИЕ В ДВИГАТЕЛЯХ

В двигателях внутреннего сгорания горючая смесь требуемого состава приготавливается из топлива и воздуха в специальном устройстве – карбюраторе, а затем подается в нужном количестве непосредственно в цилиндры двигателя.

Смесь, в которой на 1 кг бензина приходится 15 кг воздуха (со стандартным содержанием кислорода), принято называть нормальной. Если быть точным, смесь в соотношении бензина и воздуха в соотношении 1:14,7 называют стехиометрической. Если на ней работает двигатель, его мощность достаточно высока при неплохой экономичности.

Уменьшим поступление воздуха до 12,5 – 13 кг. Смесь обогатится (бензином) – станет мощностной, потому что, сгорая в цилиндрах наиболее быстро, создает максимальное давление на поршни, а значит высокую мощность. Правда, экономичность ухудшается на 15-20%. Если при сгорании на 1 кг бензина затрачивается от 13 до 15 кг воздуха смесь называют обогащенной, если менее 13 кг воздуха – богатой.

Дальнейшее обогащение 5-6 кг воздуха на 1 кг топлива приводит к тому, что способность смеси к воспламенению ухудшается настолько, что двигатель может остановиться. Если соотношение бензина и воздуха станет 1:5, то смесь не воспламеняется.

Если стремиться к экономичности, воздуха к смеси следует немного добавить – до 15-17 кг на 1 кг бензина. Такую смесь называют обедненной. Расход бензина становится минимальным, правда потеря мощности до 8-10% в сравнении с “мощностной”. Если воздуха свыше 17 кг – смесь такого состава называют бедной. Смесь при соотношении бензина и воздуха 1:21 и более не воспламеняется.

Нельзя обеднять смесь беспредельно: когда воздуха больше 20 кг на 1 кг бензина, воспламенение от искры станет ненадежным и может прекратиться. Пока он работает на бедной смеси, нечего ждать достаточной мощности и, как ни странно, экономичности. Ведь тяговые характеристики машины ухудшаются настолько, что водитель вынужден ее “подхлестывать”, переходя на пониженную передачу там, где легко ехал на высшей.

На слишком богатой смеси, мощность мотора существенно снижается, а расход бензина увеличивается. Значит, богатая или, хуже, переобогащенная смесь – это избыток бензина или недостаток воздуха.

ДЛЯ ЧЕГО ОБЕДНЯЮТ СМЕСЬ?

Смесь обеднять нужно в любом случае – это экономичность и токсичность при одинаковой мощности. Топливовоздушная смесь воспламеняется от искры в некотором диапазоне концентраций. Направленным движением воздуха (зависит от формы коллектора, клапанных каналов, камеры сгорания поршня) в цилиндре и факелом впрыскиваемого топлива можно достичь локальной “богатой” смеси в районе свечи зажигания на всех режимах работы, что позволит ей надёжно воспламеняться. При этом суммарно смесь в цилиндре будет “бедной”.

На некоторых режимах (х.х., низкая нагрузка) нет необходимости в большой дозе топлива. Соответственно, нет необходимости и в большом количестве воздуха. Для таких режимов могут уменьшить количество воздуха, например, не открывая один из двух впускных клапанов или сильно искажая фазы их открытия/закрытия, создавая дополнительное сопротивление на выпуске.

На режимах больших нагрузок открывается все, что можно и врыскиваемое топливо закруживается воздухом в цилиндре таким образом, что смесь у свечи будет локально богатой и, главное, будет обеспечено “плавное” последовательное воспламенение и сгорание порций топлива в этом вихре “цлиндровых страстей”. Т.е., смесь предельно обедняется, но лишь вихри воздуха помогают её нормально сжигать.

Не нашли интересующую Вас информацию? Задайте вопрос на нашем форуме.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Рекомендуем прочитать:

Топливная смесь — Энциклопедия журнала «За рулем»

Топливная смесь: бедная, богатая. Процесс горения


Современная система управления двигателем следит за тем, чтобы в его цилиндрах сгорала экологически чистая топливовоздушная смесь. Но некоторые автомобилисты, меняя прошивки, в том числе, влияющие на состав смеси, хотят добиться еще большей мощности или меньшего расхода топлива.
Законы физики едины для любой техники. Но то, что в поршневом двигателе скрыто от наших глаз, в реактивном порой видно снаружи. Особенно ярко — на самолетных газотурбинных двигателях. У отлично настроенного двигателя АЛ-31 пламя форсажа не желтоватое, как на двигателях многих других фирм, а прозрачно-синее, что говорит о высокой чистоте сгорания, меньшем расходе топлива. Вот только добиться такого результата, не ухудшая устойчивости работы двигателя, далеко не просто.
Вот так горит топливо и в первоклассном автомобильном двигателе. Современный автомобильный двигатель, получив подобную «идеологию», основательно поумнел. Избавляя человека от забот, машина сама себя диагностирует, сообщает о «болячках», подсказывает, когда ехать к мастерам.

В России любое горючее вещество – бензин, керосин, солярку, спирт, газ – народ называет топливом, хотя ничто не может гореть без окислителя. Чаще всего это кислород воздуха. Что же и как полыхает в цилиндрах широко распространенных бензиновых двигателей?
Распыленное форсунками горючее испаряется в каналах перед впускными клапанами. В цилиндрах же сгорает газообразная рабочая смесь горючего и воздуха. Она «гомогенная» (одного состава по всему объему), – такую электронной системе управления двигателем (ЭСУД) проще контролировать. Но если у кого-то еще трудится карбюраторный автомобиль, то многое справедливо и для него, – разница лишь в способах регулирования режимов работы.
В частности, для надежного воспламенения важно, как соотносятся в рабочей смеси массы воздуха и горючего. Смесь из 14,7 г воздуха и 1 г бензина называют стехиометрической. Воздуха ровно столько, сколько нужно для полного сгорания бензина. Отклонения от этого идеала для удобства оценивают так называемым коэффициентом избытка воздуха λ. В нашем примере. Если λ больше единицы, смесь называют бедной, меньше – богатой. При λ = 1 возможна полноценная окислительная реакция, не оставляющая неиспользованных компонентов. В отработавших газах (до первого датчика кислорода в системе выпуска) два основных продукта сгорания – углекислый газ СО2 (13,7 % по объему) и водяной пар h3O (13,1 %). Азот воздуха не горюч, – этот балласт занимает 71,5%. Правда, в реальном двигателе не все так гладко, как в теории. Даже при сжигании стехиометрической смеси в отработавших газах присутствуют СО (до 0,7 %) и СН (до 0,2 %). А на режимах с высокими температурами могут появиться и токсичные оксиды азота NOx – около 0,1 %.
С этими дозами ядов трехкомпонентный каталитический нейтрализатор справляется практически стопроцентно, это его штатный режим работы. Первые два он «доокислит» (дожжет), а оксиды NOx восстановит до безвредного азота N2.
Карбюратор и при самой грамотной регулировке не может гарантировать стехиометрии даже на основных режимах работы, не говоря уже о переходных. Отсюда экологические проблемы. Это основная причина того, что о карбюраторах (при всей их простоте и привлекательности для кого-то) автомобильный мир постепенно забывает.
Но убавим немного воздуха… При λ = 0,8…0,9 получается смесь для режимов высокой мощности, ибо скорость ее сгорания самая высокая. Но некоторая часть «заряда» в цилиндре не успевает прореагировать, доли СО и СН, как и расход топлива, несколько выше, чем при стехиометрии.
Еще меньше воздуха? Слишком богатая смесь горит неэффективно. Расход топлива велик, мощность снижена, в отработавших газах много токсичных продуктов – СО, СН и С. Первый из них – окись углерода, «угарный газ без цвета и запаха». Из-за дефицита кислорода он «недоокислился» до СО
2
. Второй – «углеводороды», пары горючего, не успевшие воспламениться и выброшенные в трубу. Третий – появившиеся в ходе реакций частицы углерода (черная копоть), которым тоже не хватило воздуха, чтобы догореть.
Копоть нарушает работу свечей – угольные «мостики» прерывают искрообразование – и в нейтрализаторе дожигается слишком много топлива, он перегревается, а при температурах свыше 1000оС ему приходит конец. Поэтому система самодиагностики, обнаружив, что в каком-то цилиндре слишком много пропусков воспламенения, отключает его форсунку – и сигнализирует: «проверь двигатель!»
Ну а если окислителя так мало, что смесь невозможно зажечь, ее называют
переобогащенной
. Именно поэтому плотные бензиновые пары в баке не взрываются даже при неисправном, сильно искрящем электрическом указателе уровня топлива.
Начнем обеднять смесь, добавляя к стехиометрической воздуха. Смесь с λ = 1,05…1,1 обеспечивает наилучшую экономичность, но с ощутимым недобором мощности. Такая смесь горит медленней, а лишний воздух равносилен балласту, уносящему в трубу часть полезной теплоты. При сильном обеднении смеси (в основном, у двигателей с непосредственным впрыском топлива в цилиндры) начинают так быстро расти выбросы NOx ,что обычный нейтрализатор с ними не справляется. Это сильно усложняет систему очистки отработавших газов. Но для двигателей, работающих преимущественно при стехиометрии (то есть обычных инжекторных) эта тема не актуальна. Наконец, смесь, в которой так много воздуха, что она не воспламеняется, называют
переобедненной
. Так, если при резком открытии дросселя мотор «проваливает», – значит, впрыск топлива не поспевает за поступлением воздуха. Хорошо известная причина – засорение топливного фильтра на входе в бензонасос!
Итак, сегодня для наиболее распространенных инжекторных двигателей оптимальной считается стехиометрическая смесь. Такова их основная настройка, прописанная в так называемых «заводских прошивках». Экономичность и мощность двигателя – на приемлемом уровне, вреда для экологии минимум. Ну а знать или не знать, как работает система, ваше личное дело. Немногие представляют себе устройство современного компьютера, а пользуются же! Важно вовремя замечать неполадки, – а устранить их обязан сервис.
Для простоты укрепления знаний можно обратиться к житейским примерам, – например, к газовой плите или деревенской печке. Если при работающем двигателе уменьшить подачу воздуха, закрыв дроссель, то ЭСУД синхронно снизит подачу топлива. А кухонная печка начнет выделять угарный газ СО.
О том, что угарного газа выделялось много, говорят черные, обугленные головешки. Почему уголь не сгорел? – Не хватило кислорода. Значит, оксида углерода СО было немало… Будь в печи пламя, как в кузнечном горне, – белое, ревущее – остался бы в ней только светлый (минеральный, не горючий) пепел.
Ну а с выстуженной печкой обращение иное. С поверхности холодных дров летучие углеводороды испаряются слабо. А цепная реакция горения устойчива и вообще возможна лишь при условии, что температура в очаге быстро достигнет градусов 800. Поэтому начинать растопку надо с мелкого топлива, но в большом количестве, чтобы поверхность горения была как можно большей. Это сухой хворост, стружки, щепки, береста, газеты. Налицо немало общего с двигателем.
Напомним, при пуске совсем холодного бензин слабо испаряется – и получить нужный состав смеси, не прибегая к каким-то дополнительным мерам, затруднительно. Поэтому контроллер прикажет форсункам настолько увеличить подачу бензина, чтобы смесь в цилиндрах смогла воспламеняться. А по мере прогрева двигателя расход топлива, в соответствии с «прошивкой мозгов», по определенному закону снижается.
Но печка – это пример «дикого», неорганизованного, горения. Гораздо показательнее экспериментировать с газовой горелкой. Бедную газо-воздушную смесь иной раз и не запалишь: хлопок – а огня нет! Если же загорится, то шумно, неустойчиво, временами даже отрываясь от горелки.
На снимках – опыты с портативной горелкой. При минимальном притоке воздуха богатая смесь от пьезо-искорки даже не загорается. От спички – неохотно. Пламя желтоватое, вялое – сразу закоптило наш стальной стержень. Затем прибавили воздуха – и получили смесь, которая отлично загорается от искры. Пламя голубое, ровное, горячее, копоти нет, стержень нагрелся докрасна. Вот эта регулировка – наилучшая.
Всякий двигатель, сжигающий топливо, неспроста называют тепловым – в нем есть та же «печка», только с лучше организованной работой. И задача, по большому счету, та же: максимум эффективности при минимуме вреда. Остается напомнить (см. график): невозможно при одном и том же составе смеси одновременно добиться максимума мощности и минимума расхода топлива. Посему оптимальной для наиболее распространенных инжекторных двигателей считается стехиометрическая смесь. С нею и мощность достаточная, и экономичность приемлемая, и вред природе – минимальный.

Подписи к фото:
1. Так горит богатая газово-воздушная смесь. Пламя горелки желтоватое и, в сравнении с правильной регулировкой, – «прохладное». Подопытный стержень закопчен.
2. Сжигаем газово-воздушную смесь оптимального состава. Пламя голубое, стержень нагрет докрасна. А позади него пламя уже не голубое – оно подсвечено частицами окалины и т. п., отрывающимися от поверхности металла.

Топливовоздушная смесь: что это, описание, свойства

Бензин и необходимый для его сгорания воздух поступают в цилиндры ДВС в виде топливовоздушной смеси. Топливовоздушная смесь — это смесь мельчайших частиц бензина с атмосферным воздухом, которую получают тщательным перемешиванием этих двух компонентов. Ясно, что до перемешивания бензин должен быть распылен, а затем и испарен еще до момента воспламенения.

Различают три способа смесеобразования для поршневых двигателей: внутренний способ, когда процесс перемешивания происходит непосредственно в объеме цилиндра; внешний способ — когда смесь получают вне объема цилиндра, например во впускном коллекторе; и смешанный, или комбинированный способ смесеобразования, при котором первый этап перемешивания протекает вне цилиндра, а второй — внутри цилиндра.

Для бензиновых ДВС самым распространенным является способ внешнего смесеобразования. Бензин перед смешиванием с воздухом распыляется либо пульверизацией, либо впрыском под давлением. Процесс пульверизации реализуется в карбюраторах, а процесс впрыска с помощью специальных устройств впрыска, которые называются форсунками.

Для внешнего смесеобразования требуется легко испаряемое топливо, к которому относятся сжиженные горючие газы и бензин. Бензин — это продукт перегонки нефти. Состоит бензин на 85% из углерода и на 15% из водорода и относится к легким углеводородным топливам. В смеси с воздухом пары бензина образуют не только горючие, но и взрывные смеси, что в основном определяется весовым соотношением бензина и воздуха, а также их парциальным давлением и температурой в смеси.

Соотношение 1/14,7 для бензина и воздуха является стехиометрическим, так как оно соответствует законам строгого количестаенного соотношения масс веществ, участвующих в химической реакции горения.

Следует иметь в виду, что топливовоздушная смесь, приготовленная внешним способом смесеобразования, еще не является топливовоздушным зарядом для поршневого двигателя. От мнксерной зоны (места образования смеси) и до камеры сгорания в цилиндре топливовоздушная смесь многократно изменяет свое агрегатное состояние под действием чередующихся изменений давления и температуры.

Как следствие, часть паров бензина переходит обратно в жидкое состояние охлаждаясь или снова образуется пар при соприкосновении бензиновых пленок с горячими стенками впускной системы и цилиндра. В результате в камеру сгорания поступает не стехиометрическая смесь, даже если она идеально приготовлена в миксерной зоне, а смесь, отличающаяся от оптимального состава в сторону уменьшения или в сторону увеличения количества бензина.

Из сказанного ясно, что по весовому составу топливо-

Соотношение воздух топливо на инжекторных двигателях

ЭБУ управляет дозировкой топливной смеси и своевременным поджогом ее в каждом цилиндре двигателя. Дозировкой топлива занимается инжектор. Зажигание обеспечивает поджиг топливной смеси.

Воздух необходимый для осуществления впрыска и поджога подается «естественным» путем. Мотор всегда самостоятельно всасывает нужный объем воздуха, но для снижения мощности двигателя, подаваемое количество воздуха в систему может быть больше необходимого и должно быть ограничено. Обычно двигатель не нуждается в постоянной максимальной мощности, поэтому большую часть времени работы мотора, подача воздуха ,как правило, принудительно ограничивается. Если автомобиль оснащен турбиной — воздух принудительно нагнетается в двигатель, но сути это не меняет. Подача всегда будет такой, какая необходима для нормальной работы, а регулируется количество воздуха самим водителем при помощи педали.
Оптимальное количества воздуха, которое необходимо для полного сжигания подаваемого в цилиндр топлива, является соотношение
Если топливо подается больше этого соотношения «богаче» то увеличивается мощность ДВС, но при этом топливо не сгорает полностью, что ведет к его большому расходу.
Если топлива поступает меньше т.е.смесь «беднее» то происходит обратный процесс, который может привести к перегреву двигателя.

Из этого следует, что для того чтобы узнать требуемое количества топлива, нужно знать сколько воздуха поступает в двигатель.

Для измерения этого показателя используют ДАТЧИК МАССОВОГО РАСХОДА ВОЗДУХА (ДМРВ). В википедии об этом устройстве можно прочитать следующее: «ДМРВ состоит из двух платиновых нитей, которые нагреваются при помощи электрического тока. Через одну нить проходит воздух, охлаждая её, вторая нить является контрольной. Количество поступаемого в двигатель воздуха вычисляется по тому, как изменяется ток проходящий через охлаждаемую воздухом платиновую нить.»

Очень интересное и позновательное видео, рассказывающее для чего нужен осцилограф и мотор-тестер.

Для того, чтобы «МОЗГИ или ЭБУ» точно могли вычислить момент подачи топлива в двигатель для воспламенения смеси, на коленвале установлен ДАТЧИК ПОЛОЖЕНИЯ КОЛЕНВАЛА(ДПКВ).

Для получения еще большей информации о точном времени воспламенения, применяется еще один датчик, похожий на ДПКВ но установленный на распредвале и называется он ДАТЧИК ПОЛОЖЕНИЯ РАСПРЕДВАЛА(ДПРВ).

Это основные датчики необходимые для того, чтобы знать потребность в необходимом количестве топлива, а также момент в который совершать поджиг подаваемой смеси.

Теперь рассмотрим работу исполнительных механизмов этого процесса.

ИНЖЕКТОРЫ, или как их называют в простонародье, ФОРСУНКИ предназначены для подачи топлива в цилиндр. Форсунка это электромеханический клапан на который подведен топливопровод высокого давления и два электрических проводка. Подали напряжение на выводы — открылась форсунка, отключили ток — закрылась форсунка. Чем прододжительнее будет время открытия форсунки, тем большее количество топлива попадет в двигатель.

Естественно для поджога подаваемой в двигатель смеси применяется как и раньше свеча зажигания получая необходимый, увеличенный ток от катушки.

Для более точного измерения подаваемого в двигатель воздуха применяются также: ДАТЧИК ТЕМПЕРАТУРЫ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ(ДТОЖ), замеряющий температуру двигателя.
ДАТЧИК ТЕМПЕРАТУРЫ ВОЗДУХА, который идентичен ДТОЖ но замеряющий температуру поступающего в двигатель воздуха.

С помощью этих датчиков производится корректировка подачи топлива на холодном двигателе, для работы которого нужно больше топлива.

Для того, чтобы двигатель не глох а работал с отпущенной педалью газа(холостой ход), применяется специальный исполнительный механизм-регулятор холостого хода(РХХ). РХХ представляет собой шаговый двигатель, при помощи которого через специальный канал в двигатель, в обход дроссельной заслонки, которая перекрывает воздух при отпущенной педали- ПОДАЕТСЯ ВОЗДУХ. ЭБУ через РХХ открывает канал и не позволяет двигателю заглохнуть. Снизились обороты- клапан приоткрывается, повысились-клапан закрывается.

Для того, чтобы ЭБУ мог определить с каким усилием водитель давит на педаль газа, добиваясь определенной скорости, на узле ДРОССЕЛЬНОЙ ЗАСЛОНКИ установлен ДАТЧИК ПОЛОЖЕНИЯ ДРОССЕЛЬНОЙ ЗАСЛОНКИ(ДПДЗ). Если взглянуть на него с технической точки зрения, то это всего-навсего потенциометр, работа которого заключается в измерении угла поворота оси дроссельной заслонки. ЭБУ узнает от ДПДЗ что нужно двигателю: увеличивать порцию подаваемого топлива или включить режим холостого хода.

Всех этих датчиков и исполнительных механизмов было бы достаточно , но экологи не дремлют и заставляют автопроизводителей с каждым годом повышать экологические нормы, лезут уже в глушителя автомобиля, требуя от производителя не только заявлять эконормы, но и постоянно контролировать и снижать выбросы до заявленного значения на выходе работающего автомобиля. Поэтому автомобилестроители вынуждены были вмонтировать не только КАТАЛИЗАТОР, снижающий вредные выбросы в атмосферу но и датчик контролирующий количество несгоревшей смеси и падающий эти значения на ЭБУ, для соответствующей корректировки. Эту функцию выполняет так называемый «лямбда зонд» или ДАТЧИК КИСЛОРОДА. ЭБУ анализирует состав выхлопных газов, сгорело не все — сокращает подачу топлива, сгорает подчистую — увеличивает подачу. Эти устройства требуют определенной температурный режим, поэтому на последних моделях установлен подогревающий элемент.

Если один или даже несколько датчиков выходят из строя, ЭБУ определяет, что датчики показывают неправильные значения и перестает на них реагировать, а на панели приборов зажигает «check engine». С такой неисправностью вы доезжаете до СТО.

«Как работает инжекторный двигатель»

«Принципы работы системы управления инжекторного двигателя «

«Режимы работы двигателя под управлением электронного блока «

«ДАТЧИКИ ИНФОРМАЦИИ И ИСПОЛНИТЕЛЬНЫЕ МЕХАНИЗМЫ, ОПРЕДЕЛЯЕМЫЕ И УПРАВЛЯЕМЫЕ ЭБУ»

«Исполнительные механизмы управления инжекторного ДВС от ЭБУ»

«Диагностика автомобиля Ларгус»

Данные по структуре инжекторного двигателя взяты с проектной работы УГЛТУ
А.П. Панычев
А.П. Пупышев
А.И. Шкаленко
Д.В. Шатунов
И.С. Шик
Разработчики создали модуль для изучения инжекторного ДВС

Петр 1 открыл окно в Европу
и через него в Россию
начала лезть всякая мерзость

«inpropart»

Современные автомобили приводит в движение двигатель внутреннего сгорания (ДВС). Он характеризуется определенной схемой работы. Внутри камеры этой системы сгорает топливно-воздушная смесь. Это значит, что, заправляя автомобиль бензином или дизелем, водитель предоставляет только один необходимый элемент для движения транспортного средства.

Топливо смешивается с воздухом. Форсунки распыляют бензин или дизель. Горючее испаряется при этом перед клапанами. В цилиндрах смесь топлива с воздухом сгорает от электрической искры. Если сканер автомобиля выдал ошибку р0172, это значит, что система определила отклонение. Это богатая смесь . Но можно и самостоятельно увидеть нарушения работы двигателя, вызванные такой проблемой. Как ее устранить, должен знать каждый владелец авто.

Общее понятие

Вникая в понятие, что такое слишком богатая смесь (ВАЗ , Skoda, BMW, Chevrolet и т. д.), следует сказать несколько слов о самом топливе. Оно состоит из соотнесенного в определенной пропорции бензина (дизеля) и воздуха. К цилиндрам двигателя подается жидкое горючее. От его количества во многом зависит это соотношение.

Богатой называется смесь, в которой бензина содержится больше, а воздуха – меньше нормы. Так как кислорода внутри камеры сгорания недостаточно, процесс работы двигателя теряет мощность. Догорание бензина происходит из-за этого уже в глушителе. Некоторые автомеханики называют такое состояние горючего высококалорийным.

Эти нарушения отражаются на внешнем виде свечей зажигания. На них появляется характерный черный нагар, копоть. Причин такому состоянию системы двигателя может быть несколько. Их обязательно необходимо найти и устранить.

Когда смесь становится богатой

Отклонения приготовления смеси появляются в результате определенных сбоев систем автомобиля. За процесс создания горючего отвечает инжектор. Он готовит смеси с определенным процентным содержанием кислорода. Именно эта способность представленного элемента двигателя дает возможность двигателю работать в разных режимах.

При необходимости водитель может, благодаря такому устройству, повысить скорость, справиться с подъемом, пойти на обгон и т. д.

Богатая смесь на инжекторе определяется математической формулой. Нормальным считается соотношение на 1 кг жидкого горючего 14,7 кг кислорода. Если в этой формуле по каким-то причинам увеличивается количество кислорода, такой состав называется бедным. Если же в смеси поднимается показатель количества топлива, смесь приобретает статус богатой.

Владелец автомобиля может самостоятельно отрегулировать уровень подачи кислорода к топливной смеси. Ошибки, допущенные в этом процессе, приводят к поломкам и неправильной работе транспортного средства.

Признаки отклонения

Богатая смесь — ВАЗ , УАЗ, BMW, Audi и прочих существующих марок автомобилей — может проявляться широким спектром отклонений в работе автомобиля. При возникновении таких нарушений необходимо срочно выяснить причину такого состояния двигателя.

В транспортных средствах, в которых установлен автосканер, при возникновении представленных отклонений загорается индикатор с соответствующим кодом ошибки (P0172). Глушитель в таком случае может издавать громкие хлопки. Это происходит из-за догорания воздуха в выхлопной трубе. Это один из первых признаков нарушений.

При этом можно заметить появление в выхлопных газах черного, серого оттенков. Это также связано с неуместным способом догорания топлива. Выхлоп не проходит никакой очистки. В трубе находится большое количество атмосферного кислорода. Поэтому отработанный газ приобретает характерный грязный оттенок.

Управление автомобилем

Слишком богатая смесь проявляется также при управлении транспортным средством. Это сразу же заметит практически любой водитель. Машина становится менее динамичной. Мощность работы двигателя резко снижается. Так как процесс сгорания в камере мотора происходит медленнее, механизм не способен работать на полную силу.

В некоторых случаях машина может даже не поехать. Но это при очень серьезных отклонениях соотношения горючего и воздуха в камере сгорания.

При езде на автомобиле владелец может заметить, что расход топлива стал больше. Это также характерный признак нарушения работы двигателя из-за работы при богатой смеси. Объясняется это нарушение просто. Двигатель в таких условиях работает неэффективно. Смесь горючего расходуется неправильно. Чтобы предотвратить низкую скорость сгорания, мотор начинает впрыскивать в камеру больше жидкого топлива.

Основные причины

Существует несколько основных причин, которые вызывают отклонения соотношения воздуха и бензина. Самыми основными из них могут быть отклонения в системе управления двигателем, а также нарушения работы привода воздушной заслонки. Неисправность инжектора тоже может объяснять, почему определяется богатая смесь. Карбюратор при неправильной настройке также способен стать причиной отклонений. Еще одним фактором образования богатой смеси считается засорение воздушного фильтра.

Нередко причиной нарушений в топливной системе становятся неправильные действия владельца автомобиля. С целью уменьшения расхода бензина или увеличения мощности мотора водитель может неправильно отрегулировать систему. В результате он получает проблемы с двигателем и необходимость проведения внеочередного техобслуживания или даже ремонта.

Отклонения подачи топлива

Так как процесс формирования горючей смеси состоит из двух основных компонентов (бензин и воздух), нарушения возможны со стороны подачи каждого из них. Избыток топлива определяется гораздо реже, чем недостаток воздуха. Но типичные нарушения подачи горючего следует рассмотреть подробнее.

Слишком богатая смесь, причины которой связаны с топливной системой, может быть вызвана высоким давлением в магистрали. Это отклонение вызывается неисправностью бензонасоса или системы регуляции. Чтобы проверить эту версию, применяют специальный манометр для топлива.

Отклонения в составе смеси может вызывать адсорбер. Через него из-за неисправности системы улавливания паров впускается большое количество бензина.

Также могут быть неисправными форсунки. Инжектор в закрытом состоянии может быть неспособен держать топливо. Это становится причиной попадания его в камеру даже при закрытых форсунках.

Неисправности подачи воздуха

Ошибка «Богатая смесь» , которую определяет система диагностики автомобиля, гораздо чаще бывает вызвана недостаточным поступлением кислорода в камеру сгорания. Причин такому нарушению несколько.

В первую очередь может быть элементарно загрязнен воздушный фильтр. По некоторым причинам (тяжелые условия эксплуатации, езда по грязным дорогам) этот элемент системы очистки кислорода может прийти в негодность даже раньше указанного производителем срока. Поэтому необходимо визуально оценить очиститель. Если он грязный, покрыт маслом, его в срочном порядке необходимо заменить. Иначе мотор быстро выйдет из строя.

В некоторых случаях причиной неполноценной подачи воздуха в камеру сгорания может стать поломка датчика его расхода. Это поможет выявить система показаний сканера. Иногда определяется неисправность датчика давления воздуха в коллекторной системе.

Автоматическая система диагностики

Если система диагностики автомобиля показывает, что возникла ошибка «Слишком богатая смесь» , необходимо предпринять определенные действия. Для этого необходимо разобраться в принципах работы сканера.

Воздух подается в горючее при диагностике сенсора МАР и лямбда-зонд. Может, ошибка P0172 вызвана отклонениями именно этих систем. Однако, кроме них, проблемы могут быть связаны с отклонениями в тепловых зазорах (двигатель с ГБО), при механическом повреждении уплотнительных материалов, недостаточной компрессии или отклонении при работе ГРМ.

Чтобы понять, почему автоматическая диагностика указывает такую ошибку, владелец автомобиля может выполнить несколько действий. В первую очередь требуется проанализировать информацию, которую предоставляет сканер. Далее можно искусственно сымитировать условия появления такой неисправности.

Следующим шагом может стать проверка узлов и механизмов, например контактов, отсутствия подсоса, а также работоспособность систем, связанных с подачей топлива и кислорода в камеру сгорания.

Устранение системной ошибки

Если система диагностики указывает, что автомобилем применяется богатая смесь , необходимо произвести ряд действий. Неисправный узел находится при последовательной проверке каждой системы. Для этого мультиметром проверяются датчики ДЖОТ, MAF, а также лямбда-зонд.

Если в этих системах отклонений не обнаружится, необходимо обратить внимание на свечи, катушки и провода. Далее замеряется давление топлива при помощи манометра, а также проверяются метки зажигания.

Затем проверяют уплотнители и соединения на впуске воздуха, а также выпускном коллекторе. Подсоса быть не должно. После проведения всех манипуляций и устранения неисправности делается сброс корректировок топливной подачи. При этом долгосрочные программы относительно этой настройки возвращаются до первоначального значения.

Советы экспертов

Если в топливном баке готовится слишком богатая смесь , первое, что рекомендуют сделать опытные автомеханики, это сбросить дополнительные настройки работы инжектора. Если владелец производил самостоятельные настройки системы регулировки топлива, он мог допустить серьезные ошибки. Богатая топливная смесь приведет к неизбежной поломке мотора очень скоро.

Если причина отклонений связана с системой форсунок, это можно определить визуально. При такой неисправности на внешней стороне инжектора появляются следы сгорания топлива.

Гарь и копоть можно обнаружить также и на одной стороне уплотнительного медного кольца. Такие отклонения бывают вызваны неправильной установкой инжектора. Если уплотнительное кольцо находится не на своем месте, также возможны подобные неисправности.

Редкие поломки

Специалисты утверждают, что 90% всех ошибок « Богатая смесь» связаны с регулировкой инжектора. Устранить ее несложно. Главное — вовремя обратить внимание на неправильную работу двигателя автомобиля.

Самыми редкими, экзотическими считаются неисправности блока управления двигателем, а также плохое состояние контактов. Иногда встречаются случаи отравления кислородного датчика. Выявить такие отклонения способен опытный специалист. Самостоятельно решить проблему в этом случае удается не каждому владельцу автомобиля.

Рассмотрев, что собой представляет богатая смесь, можно понять опасность возникновения такой ситуации. При появлении непредвиденных ситуаций лучше обратиться в сервисный центр. На пунктах техобслуживания есть необходимый инструмент, с помощью которого можно произвести диагностику. Это сохранит двигатель автомобиля.

Топливно-воздушная смесь

Корпус дроссельных заслонок
Многие увеличивают диаметр отверстия дроссельной заслонки путем уменьшения толщины внутренней стенки корпуса. В этом случае придется заменить лопасть большей по размеру. В идеале размер отверстия должен быть точно таким же, как у воздухозаборного канала.

В продаже имеются дроссельные заслонки увеличенного диаметра, однако придется изменять настройки холостого хода. Чтобы увеличить приток воздуха через корпус заслонки можно пойти другим путем: отшлифовать заслонку, то есть сгладить все неровности и острые углы. Это то же самое, что и портирование головки блока цилиндров.

Предупреждение: установка увеличенной дроссельной заслонки повысит приемистость и на малых оборотах может появиться неравномерность хода, поскольку даже при малейшем нажатии на педаль газа, заслонка будет открываться шире, чем стандартная. Чтобы этого не произошло, можно установить заслонку с двумя перегородками. Они работают следующим образом: одна перегородка открывается на низких оборотах двигателя, но как только обороты возрастают, открывается вторая.

К двигателю можно крепить две и более дроссельные заслонки, по одной на каждую воздухораспределительную камеру. Но во время монтажа придется повозиться.

Впускной коллектор
Система впрыска топлива с электронным управлением или более известный вариант названия «инжекторная».
В инжекторном двигателе вместо карбюратора установлена одна или несколько топливных форсунок, которые распыляют бензин во впускной коллектор или непосредственно в цилиндры (воздух для образования топливно-воздушной смеси подается в коллектор с помощью дроссельного узла).
Основное предназначение впускного коллектора заключается в том, чтобы обеспечить равномерное распределение воздуха или рабочей смеси между цилиндрами.

Воздухораспределительный механизм
Предназначен для распределения воздуха по цилиндрам. Шаблонные газораспределительные механизмы по большому счету не эффективны, поскольку в одни цилиндры они подают больше воздуха, а в другие меньше. Получается, что цилиндры работают с разной производительностью. При распределении воздуха очень важна форма и размер камеры.

Направляющие
Это трубки, которые идут от газораспределительной камеры к головке блока цилиндров. Их длина влияет на мощность, причем как на высоких оборотах двигателя, так и на низких, а от диаметра зависит пиковая мощность.

Отметим, что диаметр распределительных трубок зависит от пожеланий владельца автомобиля, а также от предназначения самого автомобиля. Перед тем, как менять штатные трубки на увеличенные, нужно посоветоваться с профессионалом. Вообще, трубки большего диаметра создают пиковую мощность на высоких оборотах двигателя, но, когда двигатель работает на низких оборотах, они не прибавляют мощности. По этой причине их рекомендуется устанавливать на спортивных автомобилях и драг карах. То же самое можно сказать и о длине трубок, от которой зависит мощность и производительность.

Подача топлива
Для обычного автомобиля штатной системы подачи топлива вполне достаточно. Но если машина подвергалась тюнингу – увеличение воздушного потока, установка дроссельной заслонки увеличенного диаметра, изменение системы впуска, замена штатного воздушного фильтра, установка механического нагнетателя или турбонаддува, расход топлива увеличивается. Количество топлива, поступающего в инжектор, регулируется электронным блоком управления. При этом бортовой компьютер учитывает количество воздуха, его плотность, нагрузку на двигатель и температуру. Однако датчики и блок управления имеют ограниченное количество переменных, поэтому для увеличения подачи воздуха и топлива может потребоваться перепрограммирование (прошивка). Это не относится к карбюраторным двигателям.

Слишком большое количество топлива, также как и его нехватка, могут привести к повреждению двигателя.

Топливный насос
Топливный насос должен перекачивать максимальное количество топлива (до определенного предела). Увеличение давления топлива потребует увеличения скорости подачи топлива через топливный насос. Для этого нужен насос большего размера. Его рекомендуется устанавливать на спортивных автомобилях. Однако если использовать автомобиль исключительно для спокойной езды, то штатного насоса будет вполне достаточно.

Механический топливный насос
Применяется для карбюраторных двигателей. Они оснащены рычагом, который контактирует с кулачком распределительного вала, а он в свою очередь толкает диафрагму топливного насоса вниз, в результате чего топливо поступает в насос.

Электрический топливный насос
Устанавливается на карбюраторных и инжекторных автомобилях. Такие насосы создают избыточное давление и проталкивают бензин по топливным каналам. На старых инжекторных моделях электрический топливный насос находился за пределами бензобака. На некоторых моделях было предусмотрено два таких насоса, один располагался внутри бензобака, а второй за его пределами. На современных автомобилях топливный насос находится в бензобаке. Сегодня есть возможность на старых карбюраторных машинах устанавливать электрические топливные насосы взамен механических.

Топливный фильтр
Важно, чтобы фильтр был чистый. Промыть фильтр можно бензином (в противоположном направлении подачи топлива), а можно просто продуть напором воздуха под давлением.

Регулятор топливного давления
Его предназначение – регулировать давление топлива. Как уже отмечалось ранее, увеличение воздушного потока требует дополнительного топлива и своевременную его подачу для реакции горения. Автомобили с механическими нагнетателями и турбокомпрессорами, а также все автомобили с усовершенствованной системой наддува окажутся в выигрыше за счет установки такого регулятора. Он полезен также и на обычных автомобилях с улучшенной/переделанной системой впуска. Сегодня в продаже имеются регулируемые стабилизаторы топливного давления, но они требуют правильной установки, поэтому лучше обратиться к специалистам.

Топливные форсунки
Во-первых, форсунки не должны быть забиты грязью, иначе это приведет к некорректной работе автомобиля. По этой причине их нужно периодически проверять, использовать синтетические очистительные присадки. Если форсунки основательно забиты, придется их снять и «замочить» в очищающем растворе. Беда современных инжекторов в том, что добраться до форсунок через всевозможные провода и патрубки весьма проблематично, придется как минимум половину из них снимать.

Если двигатель модифицирован, ему необходимы форсунки большие по размеру для того, чтобы обеспечить его необходимым топливом. Потребность в дополнительном топливе создает необходимость в более высоком давлении топлива. Если ваш двигатель работает нормально с имеющимися форсунками, давление топлива достаточное, чтобы оно могло поступать в двигатель в необходимом количестве, тогда не стоит прибегать к замене форсунок на увеличенные.

Примечание: всегда нужно учитывать степень модификации двигателя. В ряде случаев для обеспечения корректной работы топливно-индукционной системы потребуется заменить датчик расхода воздуха. Если изменения параметров двигателя незначительные, по этому поводу можно не беспокоиться. Необходимо перепрограммировать блок управления (если был сделан «капитальный» тюнинг двигателя). При небольших доработках бортовой компьютер прошивать не придется.

Карбюратор
Сегодня существует множество типов карбюраторов, различающихся по форме, конструкции и размерам. Ошибка большинства заключается в том, что они устанавливают карбюратор слишком большого размера. Это приводит к снижению производительности и приемистости машины. Размер карбюратора должен соответствовать формуле: (максимальные обороты х объем в кубических дюймах) / 3456 х объемный КПД
Объемный КПД – это количество воздуха, которое двигатель может продвигать исходя из своего общего объема. Например, если объем двигателя равен 302 куб. дюйма, и его КПД составляет 85%, тогда объемный КПД будет равен 0,85 (257 у.е.)

Как уже отмечалось, существует множество видов карбюраторов, но важно подобрать наиболее подходящий вариант для своего автомобиля. Некоторые карбюраторы можно назвать настоящими произведениями искусства, другие приведут в изумление многих, когда они заглянут в моторный отсек. Так что выбор за вами.

Впускной коллектор
Через впускной коллектор проходит и воздух, и топливо в карбюраторных двигателях.

Он работает по такому же принципу, что и коллектор «сухого потока». Однако через него проходит не только воздух, но и бензин, поэтому проходящий воздух, смешиваясь с бензином, становится тяжелее. Скорость прохождения смеси по топливным патрубкам из газораспределительной камеры в двигатель влияет на производительность автомобиля.

Существует большое количество вариантов тюнинг вариантов впускных коллекторов.

Популярностью пользуются двойные плоские впускные коллекторы, которые создают вакуум и засасывают воздух в цилиндры. Также имеются одинарные плоские коллекторы, которые тоже можно устанавливать. Все зависит от того, что именно планируется улучшить в машине. Ошибиться с выбором и установить неподходящий впускной коллектор – уменьшить мощность двигателя и управляемость.

Как и при любом другом тюнинге, установка карбюратора требует, чтобы все соединительные патрубки, идущие к впускному коллектору, распредвалу и головке, идеально совпадали.

Рекомендации
Относительно воздуха

Топливовоздушная смесь в бензиновом двигателе

 

Для работы двигателю с искровым зажига­нием (SI) требуется топливовоздушная смесь с определенным соотношением количества воздуха и топлива (отношение воздух/топливо). Идеальное, теоретически полное сго­рание топлива имеет место при отношении масс 14,7:1 (стехиометрическое отношение), т.е для сгорания 1 кг топлива требуется 14,7 кг воздуха. Или: топливо объемом 1 л полно­стью сгорает в присутствии 9500 л воздуха.

 

Содержание

 

Топливовоздушная смесь

 

Удельный расход топлива в значитель­ной степени зависит от соотношения воздух/топливо (см. рис. «Влияние коэффициента избытка воздуха на удельный расход топлива и неравномерную работу двигателя при постоянной эффективной мощности» ). Для обеспечения действительно полного сгорания топлива требуется избыточное количество воздуха и, следовательно, как можно более низкий расход топлива. Однако здесь имеют место ограничения, зависящие от воспламеняе­мости и доступного времени сгорания смеси.

Также состав смеси влияет на эффектив­ность снижения выбросов токсичных ве­ществ с отработавшими газами. В настоящее время с этой целью используется трехком­понентный каталитический нейтрализатор, который действует с максимальной произ­водительностью при стехиометрическом со­отношении воздух/топливо. Это может зна­чительно снизить вероятность повреждения компонентов системы очистки отработавших газов. Поэтому современные двигатели, когда это позволяют условия работы, рабо­тают при стехиометрическом составе смеси.

Для определенных условий работы двига­теля требуется адаптация состава смеси. Так, изменение состава смеси требуется при пуске холодного двигателя. Отсюда следует, что си­стемы смесеобразования должны обеспечи­вать работу двигателя в различных режимах.

 

 

Коэффициент избытка воздуха λ

 

В качестве показателя отличия фактического состава смеси от теоретически необходимого массового отношения (14,7:1) был выбран коэффициент избытка воздуха λ (лямбда). Коэффициент λ равен отношения массы по­даваемого в двигатель воздуха к массе воз­духа, необходимой для обеспечения стехио­метрического состава смеси.

λ = 1: масса подаваемого в двигатель воз­духа равна теоретически необходимой массе.

λ < 1: недостаток воздуха и, следова­тельно, богатая топливно-воздушная смесь. Максимальная выходная мощность двига­теля имеет место при λ = 0,85 — 0,95.

λ > 1: имеет место избыток воздуха, т.е. смесь становится обедненной. При работе на бедной смеси эффективная мощность двигателя падает, при этом обеспечивается снижение расхода топлива. Максимально до­пустимое значение λ — «предел возникновения пропусков зажигания при обеднении смеси» в значительной степени зависит от конструкции двигателя и используемой системы смесео­бразования. При использовании такой смеси она долго не воспламеняется, а процесс сго­рания происходит с нарушениями, сопрово­ждаемыми неравномерной работой двигателя.

На двигателях с искровым зажиганием (SI) и впрыском топлива во впускной трубопро­вод, при постоянной выходной мощности двигателя, минимальный расход топлива достигается в зависимости от двигателя при избытке воздуха 20 — 50 % (λ = 1,2 -1,5).

На рис. «Влияние коэффициента избытка воздуха на содержание токсичных веществ в отработанных газах» показаны зависимости удель­ного расхода топлива, а также содержания различных токсичных веществ в отработавших газах от коэффициента избытка воздуха (при постоянной выходной мощности двигателя). Из этих графиков видно, что нельзя выбрать идеальное значение коэффициента λ, при ко­тором все рассматриваемые показатели были бы в максимальной степени приемлемы. Для двигателей с впрыском топлива во впускной трубопровод для обеспечения «оптималь­ного» расхода топлива при «оптимальной» эффективной мощности приемлемым явля­ется значение λ в диапазоне 0,9-1,1.

В двигателях с прямым впрыском топлива и послойным распределением заряда смеси имеют место иные условия сгорания топлива, поэтому предел обеднения смеси наступает при значительно более высоких значениях λ. В диапазоне частичных нагрузок эти двигатели могут работать при значительно более высо­ком коэффициенте избытка воздуха (до λ = 4).

Для нормальной работы трехкомпонентного каталитического нейтрализатора необходимо точное соблюдение λ = 1 при нормальной рабочей температуре двигателя. Выполнение этого условия возможно при обеспечении точ­ной дозировки массы поступающего воздуха, включая и возможные добавки.

Для получения оптимального процесса сгорания в двигателях с системой впрыска то­плива во впускной трубопровод необходимо обеспечивать не только впрыск точного коли­чества топлива, но и однородность топливо­воздушной смеси, что достигается эффектив­ным распылением топлива. Если эти условия не соблюдаются, во впускном трубопроводе или на стенках камеры сгорания образуются большие капли топлива, которые полностью не сгорают, что приводит к повышенным вы­бросам несгоревших углеводородов.

 

 

Системы смесеобразования

 

Системы впрыска топлива или карбюра­торы служат для приготовления топливо­воздушной смеси, наилучшим образом обе­спечивающей эффективную работу двигателя в заданном режиме. Системы впрыска топлива, особенно их электронные версии, лучше при­способлены для получения оптимальных режимов. Они позволяют снизить расход то­плива и повысить эффективную мощность двигателя. Все более строгие требования в от­ношении снижения токсичности отработавших газов заставили производителей автомобилей практически полностью отказаться от кар­бюраторных топливных систем и перейти на электронные системы впрыска топлива.

 

 

До начала этого столетия в автомобильной промышленности практически исключи­тельно использовались системы, в которых смесеобразование происходит вне камеры сгорания (система с впрыском топлива во впускной трубопровод, см. рис. «Схематическое изображение системы впрыска топлива» , а). В на­стоящее время все шире применяются си­стемы с внутренним смесеобразованием, т.е. с прямым впрыском топлива в камеру сгора­ния (система прямого впрыска топлива для бензиновых двигателей, см. рис. «Схематическое изображение системы впрыска топлива» , Ь), позво­ляющие еще больше снизить расход топлива и повысить выходную мощность двигателя.

В следующей статье я расскажу про адаптивный круиз-контроль.

 

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Рабочая (горючая) смесь

Эта статья относится только к бензиновым двигателям. Процесс и особенности смесеобразования в дизельных двигателях описаны на соответствующей странице в этом разделе.

Содержание статьи

Состав горючей смеси

Горючая смесь состоит из паров топлива и воздуха.

Рабочий процесс в цилиндрах бензинового двигателя протекает очень быстро, каждый такт в двигателе, работающим с числом оборотов коленчатого вала 2000 об/мин, совершается за 0,015 сек.

Горение жидкого топлива происходит относительно медленно, а необходимо, чтобы сгорание топлива в цилиндре происходило за более короткое время, чем совершается какой-либо такт. Повысить скорость сгорания до 25-30 м/сек можно лишь при том условии, если жидкое топливо будет размельчено на мельчайшие капельки, а затем испарено. Образование мельчайших капелек достигается распыливанием и испарением топлива, а быстрое сгорание происходит благодаря тщательному перемешиванию этих паров с необходимым количеством воздуха.

Для полного сгорания топлива необходимо строго определенное количество кислорода, находящегося в воздухе. Если воздуха будет недостаточно, то все топливо сгореть не сможет, при избытке воздуха топливо сгорает все, но еще остается неиспользованная часть кислорода в воздухе.

Для полного сгорания топлива необходимо строго определенное количество кислорода, находящегося в воздухе. Если воздуха будет недостаточно, то все топливо сгореть не сможет, при избытке воздуха топливо сгорает все, но еще остается неиспользованная часть кислорода в воздухе.

Установлено, что для сгорания 1 кг топлива необходимо иметь 15 кг воздуха. Смесь такого состава носит название нормальной (стехиометрической). Однако при соотношении 1:15 полного сгорания топлива не происходит и часть его бесцельно теряется.

Для полного сгорания соотношение топлива и воздуха должно быть 1:17 – 1:18, такая смесь носит название обедненной. Вследствие избытка воздуха в обедненной смеси понижается ее теплотворная способность, что приводит к понижению скорости сгорания и снижению мощности двигателя.

Для повышения мощности двигателя смесь должна гореть с наибольшей скоростью, а это возможно при соотношении топлива и воздуха 1:13, такая смесь называется обогащенной. При таком составе смеси полного сгорания топлива не происходит и экономичность двигателя ухудшается, зато удается получить от него наибольшую мощность.

При соотношении топлива и воздуха меньше 1:13 скорость горения уменьшается, экономичность двигателя и его мощность снижается. Смесь такого состава называют богатой. Если соотношение топлива и воздуха в смеси больше 1:18, скорость ее горения также резко снижается, что также приводит к потере экономичности и мощности. Смесь такого состава называется бедной.

Когда содержание воздуха в смеси менее 6 кг на 1 кг топлива или более 20 кг на 1 кг топлива, горючая смесь в цилиндрах не воспламеняется.

В работающем двигателе обычно различают пять основных режимов: пуск холодного двигателя, работа на малых оборотах (холостой ход), работа при частичных нагрузках (средние нагрузки), работа при полных нагрузках и работа при резком увеличении нагрузки или числа оборотов. Для каждого из режимов состав смеси должен быть разным.

При пуске холодного двигателя условия смесеобразования очень плохие: двигатель холодный, большая часть топлива конденсируется на стенках цилиндров и во впускном трубопроводе, а скорость потока воздуха невелика, так как коленчатый вал двигателя проворачивается с небольшим числом оборотов. Для обеспечения пуска холодного двигателя смесь должна быть богатой с тем, чтобы возместить ту часть топлива, которая конденсируется на стенках цилиндров.

При малых оборотах холостого хода условия смесеобразования также плохие вследствие недостаточной очистки цилиндров от отработавших газов. Количество смеси при этом режиме должно быть невелико, но по качественному составу она должна быть обогащенной.

При средних нагрузках от двигателя полной мощности не требуется и для экономии топлива смесь должна быть обедненной, т.е. такой, которая полностью сгорает.

При полных нагрузках смесь должна обладать наибольшей скоростью сгорания с тем, чтобы от двигателя получить наибольшую мощность. Этим условиям удовлетворяет обогащенная смесь, но при этом двигатель работает менее экономично, чем при средних нагрузках.

При резком увеличении нагрузки или числа оборотов коленчатого вала смесь должна быть обогащенной, в противном случае двигатель остановится.

Влияние нарушения состава рабочей смеси на работу двигателя

Неисправности системы питания заключаются в образовании смеси несоответствующего качества и повышенном расходе топлива. К наиболее часто встречающимся неисправностям системы питания относится образование богатой или бедной горючей смеси.

Богатая рабочая смесь обладает пониженной скоростью горения и вызывает перегрев двигателя, работа его при этом сопровождается резкими хлопками в глушителе. Хлопки появляются в результате неполного сгорания смеси в цилиндре (не хватает кислорода воздуха), и догорание ее происходит в глушителе, сопровождающееся черным дымом.

Длительная работа двигателя на богатой смеси приводит к перерасходу топлива и большому отложению нагара на стенках камеры сгорания и электродах свечей зажигания. Образованию богатой горючей смеси способствует уменьшение количества поступающего воздуха или увеличение количества поступающего топлива.

Бедная горючая смесь также обладает пониженной скоростью сгорания, двигатель перегревается, и его работа сопровождается резкими хлопками во впускном трубопроводе. Хлопки появляются в результате того, что смесь еще догорает в цилиндре, когда уже открыт впускной клапан и пламя распространяется во впускной трубопровод.

Длительная работа двигателя на бедной смеси также вызывает перерасход топлива вследствие того, что мощность двигателя в этом случае падает и чаще приходится пользоваться пониженными передачами. Образованию бедной горючей смеси способствует либо уменьшение количества поступающего топлива, либо увеличение количества поступающего воздуха.

Детонация и самовоспламенение

При нормальных условиях сгорание рабочей смеси в цилиндрах двигателя происходит со скоростью 25-30 м/сек и давление в цилиндре нарастает плавно. Двигатель работает в нормальном тепловом режиме, без стуков и отказов.

При применении топлива более низкого качества, перегреве двигателя, установке очень раннего момента воспламенения смесь начинает гореть со скоростью, доходящей до 2000 м/сек. Такое взрывное сгорание смеси называется детонацией. При детонационном сгорании давление в отдельных частях цилиндра резко возрастает, появляются металлические стуки, мощность двигателя падает, появляется черный дым из глушителя. Наиболее вредно явление детонации сказывается на состоянии деталей кривошипно-шатунного механизма, где возможно разрушение отдельных деталей.

Склонность топлива к детонации условно оценивают октановым числом. Чем выше октановое число, тем топливо меньше склонно к детонации. Бензин с более высоким октановым числом применяют для двигателей с более высокой степенью сжатия.

Детонационное сгорание смеси иногда ошибочно путают с самовоспламенением или калильным зажиганием. Самовоспламенение может наступить в цилиндрах перегретого двигателя в тот момент, когда электрическая искра еще не поступила в цилиндр, а также при воспламенении от раскаленных частиц нагара или электродов свечи. Как в том, так и в другом случае смесь горит с нормальной скоростью. Обычно это явление наблюдается при выключении зажигания, когда двигатель еще продолжает некоторое время работать.

Соотношение воздух-топливо — Air–fuel ratio

соотношение масс

Воздушно-топливное отношение ( AFR ) — это массовое отношение воздуха к твердому, жидкому или газообразному топливу, присутствующему в процессе сгорания . Сгорания могут происходить контролируемый образом , например , как в двигателе внутреннего сгорания или промышленной печи, или могут привести к взрыву (например, взрывы пыли , газа или пара взрыва или в термобарическом оружии ).

Соотношение воздух-топливо определяет, является ли смесь горючей вообще, сколько энергии выделяется и сколько нежелательных загрязняющих веществ образуется в реакции. Обычно существует диапазон соотношений топлива и воздуха, за пределами которого воспламенение не происходит. Они известны как нижний и верхний пределы взрываемости.

В двигателе внутреннего сгорания или промышленной печи соотношение воздух-топливо является важной мерой для предотвращения загрязнения и по причинам настройки производительности. Если воздуха достаточно, чтобы полностью сжечь все топливо, соотношение известно как стехиометрическая смесь, часто сокращенно стехиометрическая . Коэффициенты ниже стехиометрического считаются «богатыми». Богатые смеси менее эффективны, но могут производить больше мощности и гореть меньше. Коэффициенты выше стехиометрического считаются «худыми». Бедные смеси более эффективны, но могут вызывать повышение температуры, что может привести к образованию оксидов азота . Некоторые двигатели разработаны с возможностью сжигания обедненной смеси . Для точных расчетов воздушно-топливного отношения необходимо указать содержание кислорода в воздухе для горения из-за разной плотности воздуха из-за разной высоты или температуры всасываемого воздуха, возможного разбавления окружающим водяным паром или обогащения кислородом.

Двигатель внутреннего сгорания

Теоретически в стехиометрической смеси достаточно воздуха, чтобы полностью сжечь имеющееся топливо. На практике это никогда полностью не достигается, в первую очередь из-за очень короткого времени, доступного в двигателе внутреннего сгорания для каждого цикла сгорания. Большая часть процесса сгорания завершается примерно за 2 миллисекунды при частоте вращения двигателя6000  оборотов в минуту . (100 оборотов в секунду; 10 миллисекунд на оборот коленчатого вала — что для четырехтактного двигателя обычно означает 5 миллисекунд на каждый ход поршня). Это время, которое проходит от зажигания свечи зажигания до сгорания 90% топливно-воздушной смеси, обычно примерно на 80 градусов вращения коленчатого вала позже. Каталитические нейтрализаторы предназначены для наилучшей работы, когда выхлопные газы, проходящие через них, являются результатом почти идеального сгорания.

К сожалению, стехиометрическая смесь горит очень горячо и может повредить компоненты двигателя, если двигатель находится под большой нагрузкой на этой топливно-воздушной смеси. Из-за высоких температур в этой смеси, детонация топливно-воздушной смеси при приближении к максимальному давлению в цилиндре или вскоре после него возможна при высокой нагрузке (называемой детонацией или звоном), особенно в случае «преддетонационного» события в контексте модель двигателя с искровым зажиганием. Такая детонация может вызвать серьезное повреждение двигателя, поскольку неконтролируемое сгорание топливовоздушной смеси может создать очень высокое давление в цилиндре. Как следствие, стехиометрические смеси используются только при условиях нагрузки от легкой до умеренной. В условиях ускорения и высоких нагрузок более богатая смесь (более низкое соотношение воздух-топливо) используется для получения более холодных продуктов сгорания и, таким образом, предотвращения перегрева головки блока цилиндров и тем самым предотвращения детонации.

Системы управления двигателем

Стехиометрическая смесь для бензиновых двигателей является идеальным соотношением воздуха к топливу , который сжигает все топливо без какого — либо избыточного воздуха. Для бензинового топлива стехиометрическая смесь воздух-топливо составляет около 14,7: 1, т.е. на каждый грамм топлива требуется 14,7 грамма воздуха. Для топлива с чистым октановым числом реакция окисления выглядит так:

25 O 2 + 2 C 8 H 18 → 16 CO 2 + 18 H 2 O + энергия

Любая смесь более 14,7: 1 считается бедной смесью ; любой меньше , чем 14,7: 1 является богатой смесью — с учетом совершенная (идеальная) топливо «тест» (бензин , состоящим из исключительно н — гептан и изооктано ). На самом деле, большинство видов топлива состоит из комбинации гептана, октана, нескольких других алканов , а также добавок, включая детергенты и, возможно, оксигенаторов, таких как МТБЭ ( метил- трет- бутиловый эфир ) или этанол / метанол . Все эти соединения изменяют стехиометрическое соотношение, при этом большинство добавок толкают соотношение вниз (оксигенаторы приносят дополнительный кислород к месту сгорания в жидкой форме, который выделяется во время сгорания; для топлива, загруженного МТБЭ , стехиометрическое соотношение может быть очень низким. как 14,1: 1). Транспортные средства, которые используют кислородный датчик или другой контур обратной связи для управления соотношением топлива к воздуху (лямбда-регулирование), автоматически компенсируют это изменение стехиометрической скорости топлива путем измерения состава выхлопных газов и контроля объема топлива. Транспортные средства без таких элементов управления (например, большинство мотоциклов до недавнего времени и автомобили, выпущенные до середины 1980-х годов) могут испытывать трудности с использованием определенных топливных смесей (особенно зимнего топлива, используемого в некоторых регионах) и могут потребовать других форсунок карбюратора (или иным образом изменить пропорции топлива. ) компенсировать. Транспортные средства, которые используют датчики кислорода, могут контролировать соотношение воздух-топливо с помощью измерителя отношения воздух-топливо .

Другие типы двигателей

В типичной горелке для сжигания воздуха и природного газа используется стратегия двойного перекрестного ограничения для обеспечения контроля соотношения. (Этот метод использовался во время Второй мировой войны). Стратегия включает добавление обратной обратной связи по потоку в ограничивающий контроль соответствующего газа (воздуха или топлива). Это обеспечивает контроль соотношения в пределах приемлемого запаса.

Другие используемые термины

При обсуждении смеси воздуха и топлива в двигателях внутреннего сгорания обычно используются другие термины.

Смесь

Смесь — это преобладающее слово, которое встречается в учебных текстах, руководствах по эксплуатации и техническому обслуживанию в мире авиации.

Воздушно-топливное соотношение — это соотношение между массой воздуха и массой топлива в топливно-воздушной смеси в любой данный момент. Масса — это масса всех компонентов, составляющих топливо и воздух, горючие или негорючие. Например, расчет массы природного газа, который часто содержит диоксид углерода ( CO
2), азот ( N
2) и различных алканов — включает массу диоксида углерода, азота и всех алканов при определении стоимости m топлива .

Для чистого октана стехиометрической смеси составляет приблизительно 15,1: 1, или λ 1,00 точно.

В двигателях без наддува с октановым числом максимальная мощность часто достигается при AFR от 12,5 до 13,3: 1 или λ от 0,850 до 0,901.

Соотношение воздух-топливо 12: 1 считается максимальным выходным отношением, тогда как соотношение воздух-топливо 16: 1 считается максимальной степенью экономии топлива.

Соотношение топливо-воздух (FAR)

Соотношение топливо-воздух обычно используется в газотурбинной промышленности, а также в правительственных исследованиях двигателей внутреннего сгорания и относится к соотношению топлива и воздуха.

FАрзнак равно1АFр{\ displaystyle \ mathrm {FAR} = {\ frac {1} {\ mathrm {AFR}}}}

Коэффициент воздушно-топливного эквивалента ( λ )

Отношение воздушно-топливного эквивалента λ (лямбда) — это отношение фактического AFR к стехиометрии для данной смеси. λ  = 1,0 соответствует стехиометрии, богатые смеси λ  <1,0 и бедные смеси λ  > 1,0.

Между λ и AFR существует прямая зависимость . Чтобы вычислить AFR из заданного λ , умножьте измеренное λ на стехиометрическое AFR для этого топлива. В качестве альтернативы, чтобы восстановить λ из AFR, разделите AFR на стехиометрическое AFR для этого топлива. Это последнее уравнение часто используется как определение λ :

λзнак равноАFрАFрстоич{\ displaystyle \ lambda = {\ frac {\ mathrm {AFR}} {\ mathrm {AFR} _ {\ text {stoich}}}}}

Поскольку состав обычных видов топлива меняется в зависимости от сезона, и поскольку многие современные автомобили могут работать с разными видами топлива, при настройке имеет больше смысла говорить о значениях λ, а не о AFR.

Большинство практичных устройств AFR фактически измеряют количество остаточного кислорода (для бедных смесей) или несгоревших углеводородов (для богатых смесей) в выхлопных газах.

Соотношение топливно-воздушного эквивалента ( ϕ )

Соотношение топливо-воздух эквивалентности , φ (фи), системы определяется как отношение коэффициента топлива к-окислителя к стехиометрическое соотношение количества топлива к-окислителя. Математически,

ϕзнак равносоотношение топлива к окислителю(соотношение топлива к окислителю)улзнак равномтопливо/мбык(мтопливо/мбык)улзнак равноптопливо/пбык(птопливо/пбык)ул{\ displaystyle \ phi = {\ frac {\ mbox {отношение топлива к окислителю}} {({\ mbox {отношение топлива к окислителю}}) _ {\ text {st}}}} = {\ frac {m _ {\ text {fuel}} / m _ {\ text {ox}}} {\ left (m _ {\ text {fuel}} / m _ {\ text {ox}} \ right) _ {\ text {st} }}} = {\ frac {n _ {\ text {fuel}} / n _ {\ text {ox}}} {\ left (n _ {\ text {fuel}} / n _ {\ text {ox}} \ right) _ {\ text {st}}}}}

где m обозначает массу, n обозначает количество молей, суффикс st обозначает стехиометрические условия.

Преимущество использования отношения эквивалентности перед соотношением топливо – окислитель состоит в том, что оно учитывает (и, следовательно, не зависит от) как массовые, так и молярные значения для топлива и окислителя. Рассмотрим, например, смесь одного моля этана ( C
2ЧАС
6) и один моль кислорода ( O
2). Соотношение топливо-окислитель этой смеси в зависимости от массы топлива и воздуха составляет

мC2ЧАС6мО2знак равно1×(2×12+6×1)1×(2×16)знак равно3032знак равно0,9375{\ displaystyle {\ frac {m _ {{\ ce {C2H6}}}}} {m _ {{\ ce {O2}}}}} = {\ frac {1 \ times (2 \ times 12 + 6 \ times 1) } {1 \ times (2 \ times 16)}} = {\ frac {30} {32}} = 0,9375}

и соотношение топливо-окислитель этой смеси, основанное на количестве молей топлива и воздуха, равно

пC2ЧАС6пО2знак равно11знак равно1{\ displaystyle {\ frac {n _ {{\ ce {C2H6}}}}} {n _ {{\ ce {O2}}}}} = {\ frac {1} {1}} = 1}

Очевидно, что эти два значения не равны. Чтобы сравнить его с коэффициентом эквивалентности, необходимо определить соотношение топливо – окислитель смеси этана и кислорода. Для этого необходимо рассмотреть стехиометрическую реакцию этана и кислорода,

С 2 Н 6 + 7 / 2  O 2 → 2 CO 2 + 3 Н 2 О

Это дает

(отношение количества топлива к окислителю по массе)улзнак равно(мC2ЧАС6мО2)улзнак равно1×(2×12+6×1)3.5×(2×16)знак равно30112знак равно0,268{\ displaystyle ({\ text {отношение количества топлива к окислителю в зависимости от массы}}) _ {\ text {st}} = \ left ({\ frac {m _ {{\ ce {C2H6}}}}} {m_ { {\ ce {O2}}}}} \ right) _ {\ text {st}} = {\ frac {1 \ times (2 \ times 12 + 6 \ times 1)} {3,5 \ times (2 \ times 16 )}} = {\ frac {30} {112}} = 0,268}
(соотношение топлива к окислителю в зависимости от числа молей)улзнак равно(пC2ЧАС6пО2)улзнак равно13.5знак равно0,286{\ displaystyle ({\ text {отношение топлива к окислителю в зависимости от числа молей}}) _ {\ text {st}} = \ left ({\ frac {n _ {{\ ce {C2H6}}}} { n _ {{\ ce {O2}}}}} \ right) _ {\ text {st}} = {\ frac {1} {3.5}} = 0,286}

Таким образом, мы можем определить степень эквивалентности данной смеси как

ϕзнак равномC2ЧАС6/мО2(мC2ЧАС6/мО2)улзнак равно0,9380,268знак равно3.5{\ displaystyle \ phi = {\ frac {m _ {{\ ce {C2H6}}} / m _ {{\ ce {O2}}}} {\ left (m _ {{\ ce {C2H6}}}} / m _ {{ \ ce {O2}}} \ right) _ {\ text {st}}}} = {\ frac {0,938} {0,268}} = 3,5}

или, что то же самое, как

ϕзнак равнопC2ЧАС6/пО2(пC2ЧАС6/пО2)улзнак равно10,286знак равно3.5{\ displaystyle \ phi = {\ frac {n _ {{\ ce {C2H6}}} / n _ {{\ ce {O2}}}} {\ left (n _ {{\ ce {C2H6}}}} / n _ {{ \ ce {O2}}} \ right) _ {\ text {st}}}} = {\ frac {1} {0,286}} = 3,5}

Еще одно преимущество использования коэффициента эквивалентности состоит в том, что отношения, превышающие единицу, всегда означают, что в смеси топливо-окислитель больше топлива, чем требуется для полного сгорания (стехиометрическая реакция), независимо от используемого топлива и окислителя, в то время как отношения меньше единицы представляют недостаток топлива или эквивалентный избыток окислителя в смеси. Это не тот случай, если используется соотношение топливо – окислитель, которое принимает разные значения для разных смесей.

Отношение топливно-воздушного эквивалента связано с соотношением воздушно-топливного эквивалента (определенным ранее) следующим образом:

ϕзнак равно1λ{\ displaystyle \ phi = {\ frac {1} {\ lambda}}}

Фракция смеси

Относительные количества обогащения кислородом и разбавления топлива могут быть количественно определены долей смеси Z, определяемой как

Zзнак равно[sYF-YО+YО,0sYF,0+YО,0]{\ displaystyle Z = \ left [{\ frac {sY _ {\ mathrm {F}} -Y _ {\ mathrm {O}} + Y _ {\ mathrm {O, 0}}} {sY _ {\ mathrm {F, 0 }} + Y _ {\ mathrm {O, 0}}}} \ right]},

где

sзнак равноАFрsтояcчасзнак равноWО×vОWF×vF{\ displaystyle s = \ mathrm {AFR} _ {\ mathrm {stoich}} = {\ frac {W _ {\ mathrm {O}} \ times v _ {\ mathrm {O}}} {W _ {\ mathrm {F} } \ times v _ {\ mathrm {F}}}}},

Y F, 0 и Y O, 0 представляют собой массовые доли топлива и окислителя на входе, W F и W O представляют собой молекулярные массы компонентов, а v F и v O представляют собой стехиометрические коэффициенты топлива и кислорода соответственно. Доля стехиометрической смеси составляет

Zsтзнак равно[11+YF,0×WО×vОYО,0×WF×vF]{\ displaystyle Z _ {\ mathrm {st}} = \ left [{\ frac {1} {1 + {\ frac {Y _ {\ mathrm {F, 0}} \ times W _ {\ mathrm {O}} \ times v _ {\ mathrm {O}}} {Y _ {\ mathrm {O, 0}} \ times W _ {\ mathrm {F}} \ times v _ {\ mathrm {F}}}}}} \ right]}

Доля стехиометрической смеси связана с λ (лямбда) и ϕ (phi) уравнениями

Zулзнак равноλ1+λзнак равно11+ϕ{\ displaystyle Z _ {\ text {st}} = {\ frac {\ lambda} {1+ \ lambda}} = {\ frac {1} {1+ \ phi}}},

предполагая

АFрзнак равноYО,0YF,0{\ displaystyle \ mathrm {AFR} = {\ frac {Y _ {\ mathrm {O, 0}}} {Y _ {\ mathrm {F, 0}}}}}

Процент избытка воздуха для горения

Идеальная стехиометрия

В промышленных обогревателях , парогенераторах электростанций и больших газовых турбинах более распространенными терминами являются процент избыточного воздуха для горения и процент стехиометрического воздуха. Например, избыток воздуха для горения на 15 процентов означает, что используется на 15 процентов больше, чем требуется стехиометрический воздух (или 115 процентов от стехиометрического воздуха).

Контрольную точку сгорания можно определить, указав процент избыточного воздуха (или кислорода) в окислителе или указав процентное содержание кислорода в продукте сгорания. Метр соотношение воздух-топливо может быть использован для измерения процента кислорода в газообразных продуктах сгорания, из которого процент избытка кислорода может быть вычислена от стехиометрии и баланса массы для сжигания топлива. Например, для пропана ( C
3ЧАС
8) при горении между стехиометрическим и 30-процентным избытком воздуха ( масса AFR между 15,58 и 20,3) соотношение между процентом избытка воздуха и процентом кислорода составляет:

Mаss% О2 яп пропапе cомбтыsтяоп граммаsзнак равно-0,1433(% еИксcеss О2)2+0,214(% еИксcеss О2){\ displaystyle \ mathrm {Масса \% \ O_ {2} \ in \ пропан \ сгорание \ газ} = -0,1433 (\ mathrm {\% \ extra \ O_ {2}}) ^ {2} +0,214 (\ mathrm {\% \ превышение \ O_ {2}})}
Vолтыме% О2 яп пропапе cомбтыsтяоп граммаsзнак равно-0,1208(% еИксcеss О2)2+0,186(% еИксcеss О2){\ Displaystyle \ mathrm {Объем \% \ O_ {2} \ in \ пропан \ сгорание \ газ} = -0,1208 (\ mathrm {\% \ избыток \ O_ {2}}) ^ {2} +0,186 (\ mathrm {\% \ превышение \ O_ {2}})}

Смотрите также

Ссылки

внешние ссылки

Соотношение воздух-топливо, лямбда и характеристики двигателя — x-engineer.org

Тепловые двигатели используют топливо и кислород (из воздуха) для производства энергии за счет сгорания. Чтобы гарантировать процесс сгорания, в камеру сгорания необходимо подавать определенное количество топлива и воздуха. Полное сгорание происходит, когда все топливо сгорает, в выхлопных газах не будет несгоревшего количества топлива. Соотношение воздух-топливо (AF или AFR) — это соотношение между массой воздуха м a и массой топлива м f , используемым двигателем при работе:

\ [\ bbox [# FFFF9D ] {AFR = \ frac {m_a} {m_f}} \ tag {1} \]

Обратное соотношение называется топливно-воздушным соотношением (FA или FAR) и рассчитывается как:

\ [FAR = \ frac {m_f} {m_a} = \ frac {1} {AFR} \ tag {1} \]

Идеальное (теоретическое) соотношение воздух-топливо для полного сгорания называется стехиометрическим соотношением воздух-топливо .Для бензинового (бензинового) двигателя стехиометрическое соотношение воздух-топливо составляет около 14,7: 1. Это означает, что для полного сжигания 1 кг топлива нам необходимо 14,7 кг воздуха. Возгорание возможно даже в том случае, если AFR отличается от стехиометрического. Для процесса сгорания в бензиновом двигателе минимальная AFR составляет около 6: 1, а максимальная может достигать 20: 1.

Когда соотношение воздух-топливо выше стехиометрического, топливно-воздушная смесь называется обедненной .Когда воздушно-топливное соотношение ниже стехиометрического, воздушно-топливная смесь называется богатая . Например, для бензинового двигателя AFR 16,5: 1 — обедненный, а 13,7: 1 — богатый.

В таблице ниже мы можем видеть стехиометрическое соотношение воздух-топливо для нескольких видов ископаемого топлива.

Топливо Химическая формула AFR
Метанол CH 3 OH 6.47: 1
Этанол C 2 H 5 OH 9: 1
Бутанол C 4 H 9 OH 11,2: 1
Дизель C 12 H 23 14,5: 1
Бензин C 8 H 18 14,7: 1
Пропан C 3 H 8 15.67: 1
Метан CH 4 17.19: 1
Водород H 2 34,3: 1

Источник: wikipedia.org

Например, Чтобы полностью сжечь 1 кг этанола, нам нужно 9 кг воздуха и чтобы сжечь 1 кг дизельного топлива, нам нужно 14,5 кг воздуха.

Искровое зажигание (SI) Двигатели обычно работают на бензине (бензине). AFR двигателей SI варьируется в пределах от 12: 1 (богатая) до 20: 1 (обедненная), в зависимости от условий эксплуатации двигателя (температура, скорость, нагрузка и т. Д.)). Современные двигатели внутреннего сгорания работают в максимально возможной степени со стехиометрическим AFR (в основном по причинам доочистки газа). В таблице ниже вы можете увидеть пример AFR двигателя SI, функцию частоты вращения и крутящего момента двигателя.

Изображение: Пример функции воздушно-топливного отношения (AFR) для частоты вращения и крутящего момента двигателя

Воспламенение от сжатия (CI) Двигатели обычно работают на дизельном топливе. Из-за характера процесса сгорания двигатели CI всегда работают на бедных смесях с AFR от 18: 1 до 70: 1.Основное отличие от двигателей SI заключается в том, что двигатели CI работают на слоистых (негомогенных) воздушно-топливных смесях, а двигатели SI работают на гомогенных смесях (в случае двигателей с распределенным впрыском).

Приведенная выше таблица вводится в скрипт Scilab и создается контурный график.

 EngSpd_rpm_X = [500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500];
EngTq_Nm_Y = [10; 20; 30; 40; 50; 60; 70; 80; 90; 100; 110; 120; 130; 140];
EngAFR_rat_Z = [14 14,7 16.4 17,5 19,8 19,8 18,8 18,1 18,1 18,1 18,1 18,1 18,1;
                14 14,7 14,7 16,4 16,4 16,4 16,5 16,8 16,8 16,8 16,8 16,8 16,8;
                14 14,7 14,7 14,7 14,7 14,7 14,7 15,7 15,7 15,3 14,9 14,9 14,9;
                14,2 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 13,9 13,3 13,3 13,3;
                14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,5 12,9 12,9 12,9;
                14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,3 13,3 12,6 12,1 11,8;
                14,7 14,7 14,7 14,7 14,7 14.7 14,7 14,7 13,6 12,9 12,2 11,8 11,3;
                14,1 14,2 14,7 14,7 14,7 14,7 14,7 14,7 13,3 12,5 11,9 11,4 10,9;
                13,4 13,4 13,8 14,3 14,3 14,7 14,7 13,6 13,1 12,2 11,5 11,1 10,7;
                13,4 13,4 13,4 13,4 13,4 13,6 13,6 12,1 12,1 11,6 11,2 10,8 10,5;
                13,4 13,4 13,4 13,4 13,1 13,1 13,1 11,8 11,8 11,2 10,7 10,5 10,3;
                13,4 13,4 13,4 13,4 12,9 12,9 12,5 11,6 11,3 10,5 10,4 10,3 10,2;
                13,4 13,4 13,4 13,4 12,9 12,9 12,5 11.6 11,3 10,5 10,4 10,3 10,2;
                13,4 13,4 13,4 13,4 12,9 12,9 12,5 11,6 11,3 10,5 10,4 10,3 10,2];
контур (EngSpd_rpm_X, EngTq_Nm_Y, EngAFR_rat_Z ', 30)
xgrid ()
xlabel ('Скорость двигателя [об / мин]')
ylabel ('Крутящий момент двигателя [Нм]')
название ('x-engineer.org')
 

Выполнение приведенных выше инструкций Scilab сгенерирует следующий контурный график:

Изображение: контурный график воздух-топливо с помощью Scilab

Как вычисляется стехиометрическое соотношение воздух-топливо

Чтобы понять, как рассчитывается стехиометрическое соотношение воздух-топливо , нам нужно посмотреть на процесс сгорания топлива.Горение — это химическая реакция (называемая окислением ), в которой топливо смешивается с кислородом и производит двуокись углерода (CO 2 ), воду (H 2 O) и энергию (тепло). Учтите, что для протекания реакции окисления нам нужна энергия активации (искра или высокая температура). Кроме того, результирующая реакция сильно экзотермична (с выделением тепла).

\ [\ text {Топливо} + \ text {Кислород} \ xrightarrow [высокая \ text {} температура \ text {(CI)}] {искра \ text {(SI)}} \ text {Углекислый газ} + \ text {Water} + \ text {Energy} \]
Пример 1.

Для лучшего понимания давайте посмотрим на реакцию окисления метана . Это довольно распространенная химическая реакция, поскольку метан является основным компонентом природного газа (около 94%).

Шаг 1 . Запишите химическую реакцию (окисление)

\ [CH_4 + O_2 \ rightarrow CO_2 + H_2O \]

Шаг 2 . Уравновесите уравнение

\ [CH_4 + {\ color {Red} 2} \ cdot O_2 \ rightarrow CO_2 + {\ color {Red} 2} \ cdot H_2O \]

Шаг 3 .Запишите стандартный атомный вес каждого атома.

\ [\ begin {split}
\ text {Hydrogen} & = 1.008 \ text {amu} \\
\ text {Carbon} & = 12.011 \ text {amu} \\
\ text {Oxygen} & = 15.999 \ text {amu}
\ end {split} \]

Шаг 4 . Вычислите массу топлива, равную 1 моль метана, состоящему из 1 атома углерода и 4 атомов водорода.

\ [m_f = 12.011 + 4 \ cdot 1.008 = 16.043 \ text {g} \]

Шаг 5 . Вычислите массу кислорода, состоящую из 2 моль, каждый моль состоит из 2 атомов кислорода.

\ [m_o = 2 \ cdot 15.999 \ cdot 2 = 63.996 \ text {g} \]

Шаг 6 . Вычислите необходимую массу воздуха, которая содержит расчетную массу кислорода, учитывая, что воздух содержит около 21% кислорода.

\ [m_a = \ frac {100} {21} \ cdot m_o = \ frac {100} {21} \ cdot 63.996 = 304.743 \ text {g} \]

Шаг 7 . Рассчитайте соотношение воздух-топливо, используя уравнение (1).

\ [AFR = \ frac {m_a} {m_f} = \ frac {304.743} {16.043} = 18.995 \]

Расчетная AFR для метана не совсем такая, как указано в литература.Разница может быть связана с тем, что в нашем примере мы сделали несколько предположений (воздух содержит только 21% кислорода, продукты сгорания — только углекислый газ и вода).

Пример 2.

Тот же метод можно применить для сжигания бензина. Учитывая, что бензин состоит из изооктана (C 8 H 18 ), рассчитайте стехиометрическое соотношение воздух-топливо для бензина .

Шаг 1 . Запишите химическую реакцию (окисление)

\ [C_ {8} H_ {18} + O_2 \ rightarrow CO_2 + H_2O \]

Шаг 2 .Сбалансируйте уравнение

\ [C_ {8} H_ {18} + {\ color {Red} {12.5}} \ cdot O_2 \ rightarrow {\ color {Red} 8} \ cdot CO_2 + {\ color {Red} 9} \ cdot H_2O \]

Шаг 3 . Запишите стандартный атомный вес каждого атома.

\ [\ begin {split}
\ text {Hydrogen} & = 1.008 \ text {amu} \\
\ text {Carbon} & = 12.011 \ text {amu} \\
\ text {Oxygen} & = 15.999 \ text {amu}
\ end {split} \]

Шаг 4 . Рассчитайте массу топлива, равную 1 моль изооктана, состоящему из 8 атомов углерода и 18 атомов водорода.

\ [m_f = 8 \ cdot 12.011 + 18 \ cdot 1.008 = 114.232 \ text {g} \]

Шаг 5 . Вычислите массу кислорода, которая состоит из 12,5 моль, каждый моль состоит из 2 атомов кислорода.

\ [m_o = 12,5 \ cdot 15,999 \ cdot 2 = 399,975 \ text {g} \]

Шаг 6 . Вычислите необходимую массу воздуха, которая содержит расчетную массу кислорода, учитывая, что воздух содержит около 21% кислорода.

\ [m_a = \ frac {100} {21} \ cdot m_o = \ frac {100} {21} \ cdot 399.975 = 1904.643 \ text {g} \]

Шаг 7 . Рассчитайте соотношение воздух-топливо с помощью уравнения (1)

\ [AFR = \ frac {m_a} {m_f} = \ frac {1904.643} {114.232} = 16.673 \]

И снова, рассчитанное стехиметрическое соотношение воздух-топливо для бензина равно немного отличается от приведенного в литературе. Таким образом, результат приемлем, поскольку мы сделали множество предположений (бензин содержит только изооктан, воздух содержит только кислород в пропорции 21%, единственными продуктами сгорания являются углекислый газ и вода, сгорание идеальное).

Коэффициент эквивалентности воздушно-топливного отношения — лямбда

Мы видели, что такое стехиометрическое (идеальное) соотношение воздух-топливо и как рассчитать его. На самом деле двигатели внутреннего сгорания работают не с идеальным AFR, а с близкими к нему значениями. Таким образом, у нас будет идеальный и реальный АСО на воздушном топливе. Соотношение между фактическим соотношением воздух-топливо (AFR , фактическое ) и идеальным / стехиометрическим соотношением воздух-топливо (AFR , идеальное ) называется эквивалентным соотношением воздух-топливо или лямбда (λ).

\ [\ bbox [# FFFF9D] {\ lambda = \ frac {AFR_ {actual}} {AFR_ {ideal}}} \ tag {3} \]

Например, идеальное соотношение воздух-топливо для бензина (бензин ) двигатель 14,7: 1. Если фактический / реальный AFR равен 13,5, лямбда-коэффициент эквивалентности будет:

\ [\ lambda = \ frac {13.5} {14.7} = 0,92 \]

В зависимости от значения лямбда двигатель получает команду работать с бережливым , стехиометрическая или богатая топливовоздушная смесь.

Коэффициент эквивалентности Тип топливовоздушной смеси Описание
λ <1.00 Rich Недостаточно воздуха для полного сжигания топлива; после сгорания в выхлопных газах остается несгоревшее топливо
λ = 1,00 Стехиометрический (идеальный) Масса воздуха точна для полного сгорания топлива; после сгорания в выхлопных газах нет избытка кислорода и несгоревшего топлива
λ> 1,00 обедненная Кислорода больше, чем требуется для полного сжигания топлива; после сгорания в выхлопных газах присутствует избыток кислорода

В зависимости от типа топлива (бензин или дизельное топливо) и типа впрыска (прямой или непрямой) двигатель внутреннего сгорания может работать на обедненном, стехиометрическом или обогащенном воздухе -топливные смеси.

Изображение: 3-цилиндровый бензиновый двигатель Ecoboost с прямым впрыском (лямбда-карта)
Кредит: Ford

Например, 3-цилиндровый двигатель Ford Ecoboost работает со стехиометрическим соотношением воздух-топливо для холостых и средних оборотов двигателя и полного диапазона нагрузок, и с богатой топливовоздушной смесью на высоких оборотах и ​​нагрузках. Причина, по которой он работает на богатой смеси при высоких оборотах двигателя и нагрузке, охлаждения двигателя . Дополнительное топливо (которое останется несгоревшим) впрыскивается для поглощения тепла (за счет испарения), таким образом снижая температуру в камере сгорания.

Изображение: Дизельный двигатель (лямбда-карта)
Предоставлено: wtz.de

Двигатель с воспламенением от сжатия (дизельный) постоянно работает на обедненной топливовоздушной смеси , значение коэффициента эквивалентности (λ) зависит от рабочая точка двигателя (частота вращения и крутящий момент). Причина этого — принцип работы дизельного двигателя: регулирование нагрузки не через массу воздуха (которая всегда в избытке), а через массу топлива (время впрыска).

Помните, что коэффициент стехиометрической эквивалентности (λ = 1.00) означает соотношение воздух-топливо 14,7: 1 для бензиновых двигателей и 14,5: 1 для дизельных двигателей.

Влияние воздушно-топливного отношения на характеристики двигателя

Характеристики двигателя с точки зрения мощности и расхода топлива во многом зависят от соотношения воздух-топливо. Для бензинового двигателя наименьший расход топлива достигается при обедненном AFR. Основная причина в том, что кислорода достаточно, чтобы полностью сжечь все топливо, что переводится в механическую работу. С другой стороны, максимальная мощность получается на богатых топливовоздушных смесях.Как объяснялось ранее, подача большего количества топлива в цилиндр при высокой нагрузке и скорости двигателя охлаждает камеру сгорания (за счет испарения топлива и поглощения тепла), что позволяет двигателю создавать максимальный крутящий момент двигателя, а значит, максимальную мощность.

Изображение: Мощность двигателя и функция расхода топлива воздушно-топливного отношения (лямбда)

На рисунке выше мы видим, что мы не можем получить максимальную мощность двигателя и самый низкий расход топлива при том же соотношении воздух-топливо . Самый низкий расход топлива (лучшая экономия топлива) достигается при использовании обедненных топливовоздушных смесей с AFR 15.4: 1 и коэффициент эквивалентности (λ) 1,05. Максимальная мощность двигателя достигается при использовании богатых топливовоздушных смесей с AFR 12,6: 1 и коэффициентом эквивалентности (λ) 0,86. При стехиометрической топливовоздушной смеси (λ = 1) существует компромисс между максимальной мощностью двигателя и минимальным расходом топлива.

Двигатели с воспламенением от сжатия (дизельные) всегда работают на обедненной топливовоздушной смеси (λ> 1,00). Большинство современных дизельных двигателей работают с λ от 1,65 до 1,10. Максимальный КПД (самый низкий расход топлива) достигается около λ = 1.65. Увеличение количества топлива выше этого значения (до 1,10) приведет к образованию большего количества сажи (несгоревших частиц топлива).

Р. Дуглас провел интересное исследование двухтактных двигателей. В своей докторской диссертации « Исследования замкнутого цикла двухтактного двигателя » Р. Дуглас дает математическое выражение функции коэффициента эквивалентности (λ) полноты сгорания λ ).

Для искрового зажигания (бензиновый двигатель) с коэффициентом эквивалентности от 0.3; сюжет (lmbd_g, eff_lmbd_g, ‘b’, ‘LineWidth’, 2) держать сюжет (lmbd_d, eff_lmbd_d, ‘r’, ‘LineWidth’, 2) xgrid () xlabel (‘$ \ lambda \ text {[-]} $’) ylabel (‘$ \ eta _ {\ lambda} \ text {[-]} $’) название (‘x-engineer.org’) легенда (‘бензин’, ‘дизель’, 4)

При выполнении приведенных выше инструкций Scilab выводится следующее графическое окно.

Изображение: Функция эффективности сгорания от коэффициента эквивалентности

Как вы можете видеть, двигатель с воспламенением от сжатия (дизельный) при стехиометрическом соотношении воздух-топливо имеет очень низкую эффективность сгорания.Наилучшая полнота сгорания достигается при λ = 2,00 для дизельных двигателей и λ = 1,12 для двигателей с искровым зажиганием (бензиновых).

Калькулятор соотношения воздух-топливо (лямбда)

Наблюдение : КПД сгорания рассчитывается только для дизельного и бензинового (бензинового) топлива с использованием уравнений (4) и (5). Для других видов топлива расчет полноты сгорания недоступен (NA).

Влияние воздушно-топливного отношения на выбросы выхлопных газов двигателя

Выбросы выхлопных газов двигателя внутреннего сгорания в значительной степени зависят от воздушно-топливного отношения (коэффициента эквивалентности).Основные выбросы выхлопных газов в ДВС приведены в таблице ниже.

частицы
Выбросы выхлопных газов Описание
CO монооксид углерода
HC углеводород
NOx оксиды азота
несгоревшее топливо

Для бензиновых двигателей выбросы CO, HC и NOx в выхлопных газах сильно зависят от воздушно-топливного отношения .CO и HC образуются в основном из богатой топливовоздушной смеси, а NOx — из бедных. Итак, не существует фиксированной воздушно-топливной смеси, для которой мы можем получить минимум для всех выбросов выхлопных газов.

Изображение: функция эффективности катализатора бензинового двигателя в соотношении воздух-топливо

Трехкомпонентный катализатор (TWC), используемый для бензиновых двигателей, имеет наивысшую эффективность, когда двигатель работает в узком диапазоне около стехиометрического отношения воздух-топливо. TWC преобразует от 50 до 90% углеводородов до 90… 99% окиси углерода и окислов азота, когда двигатель работает с λ = 1.00.

Лямбда-регулирование сгорания с обратной связью

Чтобы соответствовать требованиям по выбросам выхлопных газов, для двигателей внутреннего сгорания (особенно бензиновых) критически важно иметь точное управление воздушно-топливным соотношением. Таким образом, все современные двигатели внутреннего сгорания имеют замкнутый контур управления для отношения воздух-топливо (лямбда) .

Изображение: Лямбда-регулирование с обратной связью двигателя внутреннего сгорания (бензиновые двигатели)

  1. датчик массового расхода воздуха
  2. первичный катализатор
  3. вторичный катализатор
  4. топливная форсунка
  5. передний лямбда-зонд
  6. нижний по потоку лямбда-зонд (кислород) датчик
  7. контур подачи топлива
  8. впускной коллектор
  9. выпускной коллектор

Критическим компонентом для работы системы является лямбда-зонд (кислородный) .Этот датчик измеряет уровень молекул кислорода в выхлопных газах и отправляет информацию в электронный блок управления двигателем (ЭБУ). На основе значения показания датчика кислорода ЭБУ бензинового двигателя регулирует уровень массы топлива, чтобы поддерживать соотношение воздух-топливо около стехиметрического уровня (λ = 1,00).

Например (бензиновые двигатели), если уровень молекул кислорода выше порогового значения для стехиметрического уровня (следовательно, у нас обедненная смесь), при следующем цикле впрыска количество впрыскиваемого топлива будет увеличено, чтобы использовать избыток воздуха.Имейте в виду, что двигатель всегда будет переходить с обедненной смеси на богатой смеси между циклами впрыска, что будет давать «среднее» стехиометрическое соотношение топливовоздушных смесей.

Для дизельных двигателей, поскольку он всегда работает на обедненной топливовоздушной смеси, лямбда-регулирование выполняется по-другому. Конечная цель остается прежней — контроль выбросов выхлопных газов.

Для любых вопросов или замечаний относительно этого руководства, пожалуйста, используйте форму комментариев ниже.

Не забывайте ставить лайки, делиться и подписываться!

.Основы двигателя внутреннего сгорания

| Министерство энергетики

Двигатели внутреннего сгорания обеспечивают исключительную управляемость и долговечность, от них в Соединенных Штатах полагается более 250 миллионов транспортных средств, работающих по шоссе. Наряду с бензином или дизельным топливом они также могут использовать возобновляемые или альтернативные виды топлива (например, природный газ, пропан, биодизель или этанол). Их также можно комбинировать с гибридными электрическими силовыми агрегатами для увеличения экономии топлива или подключаемыми гибридными электрическими системами для расширения ассортимента гибридных электромобилей.

Как работает двигатель внутреннего сгорания?

Горение, также известное как горение, — это основной химический процесс высвобождения энергии из топливно-воздушной смеси. В двигателе внутреннего сгорания (ДВС) воспламенение и сгорание топлива происходит внутри самого двигателя. Затем двигатель частично преобразует энергию сгорания в работу. Двигатель состоит из неподвижного цилиндра и подвижного поршня. Расширяющиеся газы сгорания толкают поршень, который, в свою очередь, вращает коленчатый вал.В конечном итоге это движение приводит в движение колеса транспортного средства через систему шестерен трансмиссии.

В настоящее время производятся два типа двигателей внутреннего сгорания: бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия. Большинство из них представляют собой четырехтактные двигатели, что означает, что для завершения цикла требуется четыре хода поршня. Цикл включает четыре различных процесса: впуск, сжатие, сгорание, рабочий ход и выпуск.

Бензиновые двигатели с искровым зажиганием и дизельные двигатели с воспламенением от сжатия различаются по способу подачи и воспламенения топлива.В двигателе с искровым зажиганием топливо смешивается с воздухом, а затем вводится в цилиндр во время процесса впуска. После того, как поршень сжимает топливно-воздушную смесь, искра воспламеняет ее, вызывая возгорание. Расширение дымовых газов толкает поршень во время рабочего хода. В дизельном двигателе только воздух вводится в двигатель, а затем сжимается. Затем дизельные двигатели распыляют топливо в горячий сжатый воздух с подходящей дозированной скоростью, вызывая его возгорание.

Улучшение двигателей внутреннего сгорания

За последние 30 лет исследования и разработки помогли производителям снизить выбросы ДВС таких загрязнителей, как оксиды азота (NOx) и твердые частицы (PM), более чем на 99% в соответствии со стандартами выбросов EPA. .Исследования также привели к улучшению характеристик ДВС (мощность в лошадиных силах и время разгона 0-60 миль в час) и эффективности, помогая производителям поддерживать или увеличивать экономию топлива.

Узнайте больше о наших передовых исследованиях и разработках двигателей внутреннего сгорания, направленных на повышение энергоэффективности двигателей внутреннего сгорания с минимальными выбросами.

.

Как работает двигатель внутреннего сгорания — x-engineer.org

Подавляющее большинство автомобилей (легковые и коммерческие), которые продаются сегодня, оснащены двигателями внутреннего сгорания . В этой статье мы расскажем, как работает четырехтактный двигатель внутреннего сгорания .

Двигатель внутреннего сгорания классифицируется как тепловой двигатель . Он называется внутренний , потому что сгорание топливовоздушной смеси происходит внутри двигателя, в камере сгорания, а некоторые сгоревшие газы являются частью нового цикла сгорания.

В основном двигатель внутреннего сгорания преобразует тепловую энергию горящей топливовоздушной смеси в механическую энергию . Он называется , 4 такта , потому что поршню требуется 4 хода для выполнения полного цикла сгорания. Полное название двигателя легкового автомобиля: 4-тактный поршневой двигатель внутреннего сгорания , сокращенно ICE (Двигатель внутреннего сгорания).

Теперь давайте посмотрим, какие компоненты являются основными компонентами ДВС.

Изображение: Детали двигателя внутреннего сгорания (DOHC)

Обозначения:
  1. Распредвал выпускных клапанов
  2. Ковш выпускного клапана
  3. Свеча зажигания
  4. Ковш впускного клапана
  5. Впускной распределительный вал
  6. Выпускной клапан
  7. впускной клапан
  8. головка блока цилиндров
  9. поршень
  10. поршневой палец
  11. шатун
  12. блок цилиндров
  13. коленчатый вал

ВМТ — верхняя мертвая точка

НМТ — нижняя мертвая точка

Головка блока цилиндров (8 ) обычно содержит распредвал (ы), клапаны, клапанные лопатки, возвратные пружины клапанов, свечи зажигания / накаливания и форсунки (для двигателей с прямым впрыском).Через головку блока цилиндров протекает охлаждающая жидкость двигателя.

Внутри блока цилиндров (12) мы можем найти поршень, шатун и коленчатый вал. Что касается головки блока цилиндров, то через блок цилиндров течет охлаждающая жидкость, которая помогает контролировать температуру двигателя.

Поршень перемещается внутри цилиндра из НМТ в ВМТ. Камера сгорания — это объем, образованный между поршнем, головкой блока цилиндров и блоком цилиндров, когда поршень находится близко к ВМТ.

На Рисунке 1 мы можем рассмотреть полный набор механических компонентов ДВС.Некоторые компоненты неподвижны (например, головка цилиндров, блок цилиндров), а некоторые из них движутся. На рисунке ниже мы рассмотрим основную движущуюся часть ДВС, которая преобразует давление газа в цилиндре в механическую силу.

Изображение: Движущиеся части двигателя внутреннего сгорания

Обозначения:

  1. звездочка распределительного вала
  2. поршень
  3. коленчатый вал
  4. шатун
  5. клапан
  6. ковш клапана
  7. распредвал

Вращение синхронизированного распределительного вала составляет с вращением коленчатого вала через зубчатый ремень или цепь.Положение впускного и выпускного клапанов должно быть точно синхронизировано с положением поршня, чтобы циклы сгорания проходили соответствующим образом.

Полный цикл двигателя для 4-тактного ДВС имеет следующие фазы (такты):

  1. впуск
  2. сжатие
  3. мощность (расширение)
  4. выпуск

Ход — это движение поршня между двумя мертвыми центры (нижний и верхний).

Теперь, когда мы знаем, какие компоненты ДВС, мы можем изучить, что происходит на каждом такте цикла двигателя.В приведенной ниже таблице вы увидите положение поршня в начале каждого хода и подробную информацию о событиях, происходящих в цилиндре.

Ход 1 — ВПУСК

Такт впуска двигателя внутреннего сгорания

В начале такта впуска поршень близок к ВМТ. Впускной клапан открывается, поршень начинает двигаться в сторону НМТ. В цилиндр втягивается воздух (или топливовоздушная смесь). Этот ход называется ВПУСКОМ, потому что в двигатель попадает свежий воздух / смесь.Такт впуска заканчивается, когда поршень находится в НМТ.

Во время такта впуска двигатель потребляет энергию (коленчатый вал вращается из-за инерции компонентов).

Ход 2 — СЖАТИЕ

Такт сжатия двигателя внутреннего сгорания

Такт сжатия начинается с поршня в НМТ после завершения такта впуска. Во время такта сжатия оба клапана, впускной и выпускной, закрываются, и поршни движутся в направлении ВМТ.Когда оба клапана закрыты, воздух / смесь сжимаются, достигая максимального давления, когда поршень находится близко к ВМТ.

Прежде, чем поршень достигнет ВМТ (но очень близко к нему), во время такта сжатия:

  • для бензинового двигателя: образуется искра
  • для дизельных двигателей: впрыскивается топливо

Во время такта сжатия двигатель потребляет энергии (коленчатый вал вращается за счет инерции компонентов) больше, чем такт впуска.

Ход 3 — МОЩНОСТЬ

Рабочий ход двигателя внутреннего сгорания

Рабочий ход начинается с поршня в ВМТ.Оба клапана, впускной и выпускной, по-прежнему закрыты. Сгорание топливовоздушной смеси начинается в конце такта сжатия, что приводит к значительному увеличению давления внутри цилиндра. Давление внутри цилиндра толкает поршень вниз по направлению к НМТ.

Только во время рабочего такта двигатель вырабатывает энергию.

Ход 4 — ВЫПУСК

Такт выпуска двигателя внутреннего сгорания

Такт выпуска начинается с поршня в НМТ после завершения рабочего хода.Во время этого хода выпускной клапан открыт. Движение поршня от НМТ к ВМТ выталкивает большую часть выхлопных газов из цилиндра в выхлопные трубы.

Во время такта выпуска двигатель потребляет энергию (коленчатый вал вращается из-за инерции компонентов).

Как видите, для полного сгорания цикла (двигатель) поршень должен совершить 4 хода. Это означает, что на один цикл двигателя уходит за два полных оборота коленчатого вала (720 °).

Единственный ход, который производит крутящий момент (энергию), — это рабочий ход , все остальные потребляют энергию.

Линейное движение поршня преобразуется в вращательное движение коленчатого вала через шатун.

Для лучшего понимания мы суммируем исходное положение поршня, положение клапана и баланс энергии для каждого хода.

Порядок хода Название хода Исходное положение поршня Состояние впускного клапана Состояние выпускного клапана Энергетический баланс32
TDC Открыто Закрыто Потребляет
2 Сжатие BDC Закрыто Закрыто Потребляет
3 Мощность TDC Закрыто Закрыто Производит
4 Выхлоп BDC Закрыто Открыто Потребляет

На анимации ниже вы можете ясно увидеть, как работает двигатель внутреннего сгорания.Обратите внимание на положение поршня, положение клапана, момент зажигания и последовательность ходов.

Анимация двигателя внутреннего сгорания

В следующих статьях мы более подробно рассмотрим параметры, характеристики и компоненты двигателя внутреннего сгорания. Если у вас есть вопросы или комментарии по поводу этой статьи, используйте форму ниже для публикации.

Не забывайте ставить лайки, делиться и подписываться!

Проверьте свои знания в области двигателей внутреннего сгорания, пройдя тест ниже:

ВИКТОРИНА! (щелкните, чтобы открыть)

.

Бензиновый двигатель | Британника

Бензиновый двигатель , любой из класса двигателей внутреннего сгорания, вырабатывающих энергию за счет сжигания летучего жидкого топлива (бензина или бензиновой смеси, такой как этанол) с воспламенением от электрической искры. Бензиновые двигатели могут быть построены для удовлетворения требований практически любого возможного применения в силовых установках, наиболее важными из которых являются легковые автомобили, небольшие грузовики и автобусы, самолеты авиации общего назначения, подвесные и малые внутренние морские агрегаты, стационарные насосные агрегаты среднего размера, осветительные установки и т. Д. станки и электроинструменты.Четырехтактные бензиновые двигатели используются в подавляющем большинстве автомобилей, легких грузовиков, средних и больших мотоциклов и газонокосилок. Двухтактные бензиновые двигатели встречаются реже, но они используются для небольших подвесных судовых двигателей и во многих ручных инструментах для озеленения, таких как цепные пилы, кусторезы и воздуходувки.

Поперечный разрез V-образного двигателя. Encyclopædia Britannica, Inc.

Типы двигателей

Бензиновые двигатели можно сгруппировать в несколько типов в зависимости от нескольких критериев, включая их применение, метод управления подачей топлива, зажигание, расположение поршня и цилиндра или ротора, количество ходов за цикл, систему охлаждения, а также тип и расположение клапана.В этом разделе они описаны в контексте двух основных типов двигателей: поршневых двигателей и роторных двигателей. В поршневом двигателе давление, создаваемое сгоранием бензина, создает силу на головку поршня, которая перемещает цилиндр по длине возвратно-поступательным или возвратно-поступательным движением. Эта сила отталкивает поршень от головки цилиндра и выполняет работу. Роторный двигатель, также называемый двигателем Ванкеля, не имеет обычных цилиндров, оснащенных возвратно-поступательными поршнями.Вместо этого давление газа действует на поверхности ротора, заставляя ротор вращаться и таким образом выполнять работу.

бензиновые двигатели Типы бензиновых двигателей включают (A) двигатели с оппозитными поршнями, (B) роторные двигатели Ванкеля, (C) рядные двигатели и (D) двигатели V-8. Encyclopædia Britannica, Inc.

Большинство бензиновых двигателей относятся к поршнево-поршневому типу. Основные компоненты поршневого двигателя показаны на рисунке. Почти все двигатели этого типа используют четырехтактный или двухтактный цикл.

Типовая схема поршневой цилиндр бензинового двигателя. Encyclopædia Britannica, Inc.

Четырехтактный цикл

Из различных методов восстановления энергии от процесса сгорания наиболее важным до сих пор был четырехтактный цикл, концепция, впервые разработанная в конце 19 века. Четырехтактный цикл показан на рисунке. При открытом впускном клапане поршень сначала опускается на такте впуска. Воспламеняющаяся смесь паров бензина и воздуха втягивается в цилиндр за счет создаваемого таким образом частичного вакуума.Смесь сжимается, когда поршень поднимается на такте сжатия при закрытых обоих клапанах. По мере приближения к концу хода заряд воспламеняется электрической искрой. Затем следует рабочий ход, когда оба клапана все еще закрыты, а давление газа обусловлено расширением сгоревшего газа, давящим на головку поршня или головку. Во время такта выпуска восходящий поршень выталкивает отработавшие продукты сгорания через открытый выпускной клапан. Затем цикл повторяется. Таким образом, каждый цикл требует четырех тактов поршня — впуска, сжатия, мощности и выпуска — и двух оборотов коленчатого вала.

Двигатель внутреннего сгорания: четырехтактный цикл Двигатель внутреннего сгорания имеет четыре такта: впуск, сжатие, сгорание (мощность) и выпуск. Когда поршень перемещается во время каждого хода, он поворачивает коленчатый вал. Encyclopædia Britannica, Inc. Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

Недостатком четырехтактного цикла является то, что завершается только половина тактов мощности по сравнению с двухтактным циклом ( см. Ниже ), и только половину такой мощности можно ожидать от двигателя данного размера при заданная рабочая скорость.Однако четырехтактный цикл обеспечивает более эффективную очистку выхлопных газов (продувку) и повторную загрузку цилиндров, уменьшая потерю свежего заряда в выхлопе.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *