Vvti как работает: Vvti принцип работы

Содержание

Принцип работы муфты изменения фаз газораспределения VVTI

Муфта VVTI позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это стало возможно благодаря повороту впускного распределительного вала относительно ведущей звездочки в диапазоне 40 ° (угол поворота коленчатого вала). Для регулировки поворота распредвала используется электродвигатель, который меняет угол положения распределительного вала в зависимости от температуры, оборотов и давления масла в двигателе. Угол поворота распредвала выпускных клапанов относительно ведущей звездочки достигает диапазона 35 °. Привод начинает работать с момента запуска двигателя и устанавливает распредвал в оптимальное положение для лёгкого запуска.

Сроки привода (серия UR). 1 — двигатель VVT-iE, 2 — соленоид управления VVT-i, 3 — датчик положения коленчатого вала, 4 — датчик положения распределительного вала (впуск), 5 — датчик положения распределительного вала (выпускной), 6 — датчик температуры воды, 7 — датчик положения распределительного вала

Привод VVTI. 1 — двигатель, 2 — крышка (статорная шестерня), 3 — ротор, 4 — ведомая шестерня, 5 — спиральная пластина, 6 — рычаги, 7 — опора, 8 — корпус (звездочка), 9 — впускной распределительный вал.

Главная цепь привода ГРМ приводит в движение впускной распределительный вал, а затем по короткой соединительной цепи приводной распредвал тоже приходит в движение.
Привод VVTI состоит из рычажного механизма и циклоидального редуктора. Рычажный механизм состоит из корпуса (соединен со звездочкой ГРМ), держателя (соединен с распределительным валом) и соединяющих их спиральной пластины и рычагов. 

Циклоидный редуктор муфты VVTI состоит из крышки (с редуктором статора), ротора (соединенного с электродвигателем) и ведомой шестерни (которая имеет на 1 зубец больше, чем шестерня статора), соединенной с ротором. Когда вращения коленвала двигателя увеличивается на 1000 оборотов, ведомая шестерня смещается на 1 зуб.

Работа редуктора VVTI. 1 — несущая, 2 — статорная, 3 — ведомая передача, 4 — отметка.

Спиральная пластина, соединенная с ведомой шестерней, приводится в действие через редуктор. Рычаги передают вращение спиральной пластины на держатель, распределительный вал и муфту VVTI.

Система VVTI состоит из электродвигателя постоянного тока, который не имеет щёток, блока управления EDU и датчика Холла. Блок управления EDU служит посредником между ECM и электродвигателем, контролируя скорость и направление вращения.

VVTI мотор. 1 — ЭДУ, 2 — электродвигатель, 3 — датчик Холла.

Регулировка фаз газораспределения основана на разнице скоростей между двигателем и распределительным валом. В режиме удержания скорость двигателя и распредвала равна. В режиме опережения двигатель вращается быстрее, чем распределительный вал. В режиме замедления наоборот медленнее или в обратную сторону.

Режимы работы двигателя.

По сигналу ECM двигатель муфты VVTI начинает вращаться быстрее, чем распределительный вал. Спиральная пластина поворачивается по часовой стрелке через редуктор. Рычаги, вставленные в спиральные канавки, перемещаются к центральной оси распределительного вала и вращают его с ускорением по отношению к коленчатому валу.

По сигналу ECM двигатель вращается ниже, чем распределительный вал. Спиральная пластина поворачивается против часовой стрелки через редуктор. Рычаги, вставленные в спиральные канавки, сдвигаются от центральной оси распределительного вала и вращают распределительный вал по отношению к коленчатому валу с замедлением.

После достижения заданного момента коленчатый вал двигателя вращается с той же скоростью, что и распределительный вал. Рычажный механизм фиксируется и удерживает фазы газораспределения.

Муфта VVTI с лопастным ротором устанавливается на распредвал выпускных клапанов. Когда двигатель заглушен, стопорный штифт удерживает ротор, сдвинутым до упора вперёд для нормального запуска. 
Вспомогательный пружинный механизм служит для возврата ротора и надежной работы замка после выключения двигателя.

Привод VVTI. 1 — корпус, 2 — ротор, 3 — стопорный штифт, 4 — звездочка, 5 — распределительный вал, 6 — вспомогательная пружина.а — останов, б — работа, в — давление масла.

Контроллер ЭСУД управляет потоком масла в камерах муфты VVTI с помощью соленоида, основываясь на сигналах датчиков положения распределительного вала. На заглушенном двигателе золотник клапана перемещается пружиной на максимальный угол наклона.

a — пружина, b — втулка, c — золотник клапана, d — к приводу (передняя камера), e — к приводу (обратная камера), f — слив, g — давление масла, h — катушка, j — поршень.

ЭСУД переключает соленоид в положение опережения и перемещает золотник регулирующего клапана. Моторное масло под давлением подается в ротор в камеру опережения, поворачивая его вместе с распределительным валом в направлении опережения.

ЭСУД так же переключает соленоид в положение запаздывания и перемещает золотник регулирующего клапана в противоположную сторону. Моторное масло под давлением подается к ротору в камеру замедления, поворачивая его вместе с распределительным валом в направлении замедления.

Контроллер ЭСУД рассчитывает целевой угол в соответствии с параметрами работы двигателя и после достижения заданного положения переключает регулирующий клапан в нейтральное положение до следующего изменения внешних условий, удерживая масло в контуре. 

Достаточно часто проблемы и неисправности муфты VVTI связаны с загрязнением её компонентов. Эффективный средством, помогающем решить эту проблему является промывка масляной системы BG 109. В 8-ми из 10 случаев она помогает устранить неисправность без разбора.

KLIK!

Система Toyota VVT-i

10.07.2006

Рассмотрим здесь принцип функционирования системы VVT-i второго поколения, которая применяется сейчас на большинстве тойотовских двигателей.
Система VVT-i (Variable Valve Timing intelligent — изменения фаз газораспределения) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 40-60° (по углу поворота коленвала). В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).

1. Конструкция

Исполнительный механизм VVT-i размещен в шкиве распределительного вала — корпус привода соединен со звездочкой или зубчатым шкивом, ротор — с распредвалом.

Масло подводится с одной или другой стороны каждого из лепестков ротора, заставляя его и сам вал поворачиваться. Если двигатель заглушен, то устанавливается максимальный угол задержки (то есть угол, соответствующий наиболее позднему открытию и закрытию впускных клапанов). Чтобы сразу после запуска, когда давление в масляной магистрали еще недостаточно для эффективного управления VVT-i, не возникало ударов в механизме, ротор соединяется с корпусом стопорным штифтом (затем штифт отжимается давлением масла).


Управление VVT-i осуществляется при помощи клапана VVT-i (OCV — Oil Control Valve).
По сигналу блока управления электромагнит через плунжер перемещает основной золотник, перепуская масло в том или ином направлении. Когда двигатель заглушен, золотник перемещается пружиной таким образом, чтобы установился максимальный угол задержки.

2. Функционирование

Для поворота распределительного вала масло под давлением при помощи золотника направляется к одной из сторон лепестков ротора, одновременно открывается на слив полость с другой стороны лепестка. После того, как блок управления определяет, что распредвал занял требуемое положение, оба канала к шкиву перекрываются и он удерживается в фиксированном положении.


При повороте распредвала в сторону более раннего открытия клапанов


При повороте распредвала в сторону более позднего открытия клапанов


В режиме удержания

Функционирование системы VVT-i определяется условиями работы двигателя на различных режимах.

Режим

Фазы

Функции

Эффект

Холостой ход

1

Установлен угол поворота распределительного вала, соответствующий самому позднему началу открытия впускных клапанов (максимальный угол задержки). «Перекрытие» клапанов минимально, обратное поступление газов на впуск минимально.
Двигатель стабильнее работает на холостом ходу, снижается расход топлива

Низкая нагрузка

2

Перекрытие клапанов уменьшается для минимизации обратного поступление газов на впуск. Повышается стабильность работы двигателя

Средняя нагрузка

3

Перекрытие клапанов увеличивается, при этом снижаются «насосные» потери и часть отработавших газов поступает на впуск Улучшается топливная экономичность, снижается эмиссия NOx

Высокая нагрузка, частота вращения ниже средней

4

Обеспечивается раннее закрытие впускных клапанов для улучшения наполнения цилиндров Возрастает крутящий момент на низких и средних оборотах

Высокая нагрузка, высокая частота вращения

5

Обеспечивается позднее закрытие впускных клапанов для улучшения наполнения на высоких оборотах Увеличивается максимальная мощность

При низкой температуре охлаждающей жидкости

Устанавливается минимальное перекрытие для предотвращения потерь топлива Стабилизируется повышенная частота вращения холостого хода, улучшается экономичность

При запуске и остановке

Устанавливается минимальное перекрытие для предотвращения попадания отработавших газов на впуск Улучшается запуск двигателя

3. Вариации

Приведенный выше 4-лепестковый ротор позволяет изменять фазы в пределах 40° (как, например, на двигателях серий ZZ и AZ), но если требуется увеличить угол поворота (до 60° у SZ) — применяется 3-лепестковый или расширяются рабочие полости.

Принцип действия и режимы работы этих механизмов абсолютно аналогичны, разве что за счет расширенного диапазона регулировки становится возможным вообще исключить перекрытие клапанов на холостом ходу, при низкой температуре или запуске.

При повороте распредвала в сторону более раннего открытия клапанов При повороте распредвала в сторону более позднего открытия клапанов В режиме удержания

Евгений, Москва
© Легион-Автодата


Комментарии и вопросы
можно направлять на
[email protected]

V-TEC, Vanos и VVT-i: как же они все работают?

Системы изменения фаз газораспределения стали революцией для двигателей внутреннего сгорания, а популярными они стали благодаря японским моделям 90-ых. Но как же самые известные системы отличаются в работе друг от друга?

Двигатели внутреннего сгорания с самого своего создания не были максимально эффективными. Средний КПД таких моторов равен 33 процентам — вся остальная энергия, созданная сгорающей топливо-воздушной смесью, тратится впустую. Поэтому любой способ сделать ДВС более энергоэффективным был востребован, а система изменения фаз газораспределения стала одним из самых удачных решений.

Система меняет фазы газораспределения (момент, в который каждый клапан открывается и закрывается во время рабочего цикла), их длительность (момент, когда клапан открыт) и подъём (насколько клапан может открыться).

Как вы знаете, впускной клапан в двигателе запускает в цилиндр топливо-воздушную смесь, которая затем сжимается, сжигается и выталкивается в открывающийся выпускной клапан. Эти клапана приводятся в движение толкателями, которыми управляет распредвал, используя набор кулачков для идеального соотношения закрытия и открытия.

К сожалению, обычные распредвалы делаются таким образом, что можно управлять только открытием клапанов. В этом и заключается проблема, так как для максимальной эффективности клапана должны закрываться и открываться по-разному на разных оборотах двигателя.

Например, на большой скорости работы мотора впускной клапан нужно открывать несколько раньше из-за того, что поршень движется настолько быстро, что не даёт попасть внутрь достаточному количеству воздуха. Если клапан открыть чуть раньше, то в цилиндр попадёт больше воздуха, что увеличит эффективность сгорания.

Поэтому вместо компромисса между распредвалами для больших и малых оборотов появилась система изменения фаз газораспределения, признанная одной из наиболее эффективных в этой области. Разные компании по-разному интерпретировали эту технологию, поэтому давайте разберёмся с самыми популярными из них.

VTEC.

Решение от Honda заключалось в форме распредвала, так как каждый распредвал имел два набора кулачков, смена между которыми происходила в зависимости от оборотов двигателя. VTEC (Variable Valve Timing and Lift Electronic Control) при помощи гидравлики выбирает между одним набором кулачков, когда мотор работает на низких оборотах, и другим, когда он приближается к красной зоне. Такая система в свою очередь позволила одновременно и снизить расход топлива, и повысить мощностные показатели при использовании одного распредвала, сделав моторы Honda очень разносторонними.

Гидравлическое переключение контролируется блоком управления, который использует информацию о давлении масла, температуре двигателя, скорости автомобиля и оборотов двигателя. После этого программа решает, какой из двух вариантов кулачков использовать, используя соленоид, который отправляет масляное давление посредством специфического клапана, а затем запирает механизм штифтом, закрепляя выбор за одним из вариантов.

Такая смена вариантов кулачков подразумевала, что двигатели Honda с VTEC в самом высоком диапазоне оборотов выдают максимальную мощность, как раз после того, как система «срабатывает». И пусть эффект от неё не такой, как от турбины, но многие фанаты всё равно останутся верны VTEC-моторам, рассказывая о том, как они едут на самых высоких оборотах.

VVT-i.

Система изменения фаз газораспределения от Toyota создана по пути использования шестерён распредвала для изменения отношений между ремнём или цепью ГРМ и распредвалом. Специальный ротор внутри шкива распредвала может вращаться под нагрузкой от пружины, поворачивая распредвал на дополнительные несколько градусов, задерживая или опережая взаимодействие между зубьями шкива и вращающейся цепи.

Такая система сдвига фаз газораспределения, при которой внутренний ротор в шкиве распредвала может влиять на положение распредвала, тем самым изменяя время взаимодействия кулачков и толкателей, применяется на многих моторах Toyota. Впервые технология была представлена на двигателе 2JZ-GE, устанавливаемом на знаменитую Toyota Supra в кузове A80.

Vanos.

Vanos (или Variable Nockenwellensteuerung) — попытка компании BMW создать систему изменения фаз газораспрделения, и впервые она была применена на моторе M50, устанавливаемом на 5-серию в 90-ых годах прошлого века. Он также использует принцип задерживания или опережения взаимодействия механизмов ГРМ, но с использованием зубчатой передачи внутри шкива распредвала, которая двигается вместе или против распредвала, изменяя фазы работы. Этот процесс контролируется электронным блоком управления, который использует давление масла для движения зубчатой передачи вперёд или назад.

Как и в случае с остальными системами, зубчатая передача движется вперёд для того, чтобы открывать клапана немного раньше, увеличивая количество воздуха, поступающего в цилиндры и увеличивая выходную мощность двигателя. На самом деле, сначала BMW представили одиночный Vanos, который работал только на впускном распредвале в определённых режимах на разных оборотах двигателя. Немецкая компания позже разработала систему с двумя Vanos, которая считается более продвинутой, так как влияет на оба распредвала, а также регулирует положение дроссельной заслонки. Двойной Vanos был создан для S50B32, который ставили на BMW M3 в кузове E36, а также Z3 M.

Сейчас практически у каждого крупного производителя есть собственной название для системы фаз газораспределения — у Rover это VVC, у Nissan — VVL, а Ford разработали VCT. И в этом нет ничего удивительного, учитывая, что это одна из самых удачных находок для двигателей внутреннего сгорания. Благодаря ей производители смогли и уменьшить расход, и увеличить мощность своих моторов.

Но с приходом пневматического управления клапанами эти системы уйдут на покой. Однако сейчас — как раз их время.

Подпишись на наш Telegram-канал

Статьи — Информация — AUTOSPACE.BY

Технология VVT-i

VVT-i (Variable Valve Timing with intelligence) — система газораспределения с изменяемыми фазами от Toyota. Является разновидностью технологии VVT и CVVT. Включает в себя, по мере развития, технологии VVT-i, VVTL-i,Dual VVT-i, VVT-iE и Valvematic.

Технология VVT-i была впервые выпущена на рынок в 1996 году и заменила собой первое поколение VVT (1991 год, двигатель 4A-GE).

В зависимости от условия работы двигателя, система VVT-i плавно изменять фазы газораспределения. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 20-30° (по углу поворота коленвала). В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).

Основным элементом устройства является муфта VVT-i интегрированная в шкив, который выполняет роль корпуса муфты. Ротор муфты находится внутри и непосредственно соединен с распределительным валом.

Изначально фазы впускных клапанов установлены таким образом, чтобы добиться максимального крутящего момента при низкой частоте вращения коленвала. После того, как обороты значительно увеличиваются в корпусе муфты сделано несколько полостей, к которым по каналам подводится моторное масло из системы смазки.

Возросшее давление масла открывает клапан VVT-i, заполняя ту или иную полость, обеспечивает поворот ротора относительно корпуса и, соответственно, смещение распределительного вала на определенный угол.

Кулачки имеют определенную форму и при повороте коленчатого вала открывают впускные клапана немного раньше, а закрывают позже, что благоприятно сказывается на увеличении мощности и крутящего момента на высоких оборотах.

Технология VTEC

VTEC (Variable valve Timing and lift Electronic Control) — система динамического изменения фаз газораспределения, фирменная разработка компании Honda. Вначале система VTEC была успешно реализована в двигателях, применяемых в спортивных автомобилях, а затем, после признания и успеха данная система использована на двигателях гражданских автомобилей.

Особенность системы VTEC заключается в том, что возможно конструировать компактные, но очень мощные (в соотношении объем/л.с.) двигатели без применения дополнительных устройств (турбин, компрессоров), при этом технология производства подобных двигателей остается недорогой, а автомобиль с установленной на нем системой VTEC не испытывает проблем, характерных для турбированных автомобилей.

Принцип работы VTEC, в классическом виде по сравнению с другими системами газораспределения, конструктивно выглядит просто, — на распредвале между основными кулачками разместили один дополнительный кулачок большего профиля. Получается, что на каждый цилиндр приходится по одному дополнительному кулачку.

За наполнение топливной смесью камеры сгорания на низких и средних оборотах работы двигателя, отвечают два внешних кулачка, а центральный задействуется на высоких оборотах. Обратите внимание, что непосредственно на клапана воздействуют не кулачки распредвала, а через так называемые коромысла/рокеры, которых тоже три. Внешние кулачки воздействуют на рокеры, обеспечивающие открытие клапанов независимо друг от друга, а центральная пара кулачек-рокер, хотя и работает, но работает, что называется вхолостую. Клапаны имеют минимальную высоту подъема, фазы ГРМ характеризуются малой продолжительностью.

Как только двигатель достигает определенного количества оборотов, т.е. переходит в режим высоких оборотов, система VTEC активируется. Под давлением масла происходит смещение синхронизирующего штифта внутри рокеров таким образом, что все три рокера как бы становятся одной целой конструкцией, и после этого усилие на впускные клапаны передается от большого кулачка распредвала. Таким образом, увеличивается ход клапанов и фазы газораспределения.

При снижении количества оборотов система возвращается в исходную позицию.

Недостатками такой системы являются ступенчатый переход с одного режима на другой и конструктивная сложность реализации процесса блокировки.

Разновидности VTEC

На сегодняшний день существует несколько разновидностей системы VTEC. Первая категория рассчитана на увеличение мощности. Второй, VTEC-E, ставились совсем иные задачи — экономия топлива, о чем и говорит приставка «E» — econom. Итак, разновидности:

  • DOHC VTEC 1989-2001 гг, cамый мощный в семействе VTEC до 2001 года
  • SOHC VTEC 1991-2001 гг, средняя, более простая конструкция по сравнению с DOHC VTEC, но и менее мощная
  • SOHC VTEC-E 1991-2001 гг, самый экономичный VTEC
  • 3-stage VTEC-E 1995-2001 гг, совместил SOHC VTEC и VTEC-E, в отличие от них различает низкие, средние и высокие обороты
  • DOHC і-VTEC c 2001 года
  • SOHC і-VTEC c 2006 года
  • 3-stage i-VTEC (только на «гибридах») c 2006 года

Особенность данного двигателя заключается в том, что в городском цикле у автомобиля с системой VTEC-E, расход топлива составляет около 6,5-7 литров бензина на 100 км пути. Это поистине выдающийся результат, учитывая то, что такие двигатели Honda развивают мощность 115 «лошадиных сил». Но автомобили с таким двигателем лишены драйверских ощущений.

Такой результат достигается за счет того, что при небольших оборотах двигатель работает на обедненной топливовоздушной смеси, которая поступает в его цилиндры только через один впускной клапан. Это происходит по причине того, что на втором клапане, кулачек управляющий открытием и закрытием клапана, имеет профиль кольца и поэтому реально работает только один клапан.

За счёт несимметричности потока поступающей горючей смеси (один клапан закрыт, а второй открыт) возникают завихрения, происходит лучше и равномернее заполнение камеры сгорания, что позволяет двигателю работать на довольно бедной смеси. При увеличении оборотов (2500 оборотов и выше) срабатывает система VTEC, синхронизирующий шток под давлением масла перемещается, и рокер первичного клапана входит в зацепление с рокером вторичного клапана и оба клапана работают синхронно.

i-VTEC

Очередной разработкой компании Honda газораспределительного механизма с изменяемыми фазами VTEC является система, получившая обозначение i-VTEC (где буква «i» означает «Intellegence» — «интеллектуальный»).

«Интеллектуальность» же данной системы заключалась в следующем — управление изменением фаз осуществляется компьютером, при помощи функции поворота распредвала, регулируя угол опережения. Система i-VTEC позволила двигателям Honda получить больший крутящий момент на низких оборотах, что было постоянной проблемой для двигателей компании, — при высокой мощности они отличались малым крутящим моментом, получаемым на высоких оборотах.

Версия i-VTEC если не устранила, но существенно подкорректировала этот недостаток. Система i-VTEC начала устанавливаться на мощные моторы серии К и некоторых серии R, например, в автомобилях серии Type R, или Acura RSX. Другая версия, напротив, получила «экономичное» направление, и стала устанавливаться в гражданской серии двигателей (например на автомобилях CR-V, Accord, Element, Odyssey, и других).

Принцип работы SOHC i-VTEC

Компания Honda реализовала работу SOHC i-VTEC на простых принципах, которые заключаются, в том, что когда мы управляем автомобилем, то мы придерживаемся в основном двух различных стилей вождения.

Первый стиль вождения мы принимаем за спокойную езду без резких ускорений, с пустым багажником и без пассажиров. В таком режиме обороты двигателя, как правило, не превышают порог в 2,5 – 3,5 тысяч оборотов в минуту, а усилия на педаль газа минимальны. Такие условия являются наиболее благоприятными для экономии топлива.

В классическом виде воздействуя на педаль газа, мы открываем или закрываем дроссельную заслонку и регулируем подачу количества воздуха. В зависимости от количества попадающего воздуха, электронная система управления двигателем в нужной пропорции подает топливо для образования топливно-воздушной смеси. Чем сильнее нажимаем на педаль газа, тем больше открывается дроссельная заслонка (увеличивается поперечное сечение впускного канала). В это же время дроссельная заслонка являлась препятствием для прохождения воздуха.

Дроссельная заслонка — элемент впускной системы, которая регулирует подачу воздуха в двигатель.

По идее, такое поведение дроссельной заслонки должно способствовать экономии топлива — поступает меньше воздуха и соответственно компьютер уменьшает дозу подаваемого топлива. Однако это не совсем так. В такой ситуации дроссельная заслонка выступает в качестве силы сопротивления, препятствуя прохождению воздуха, когда этого требует рабочий процесс. Получается поршень, опускаясь в цилиндре вниз нижней мертвой точки, должен всасывать топливно-воздушную смесь, затрачивая на это собственную энергию. Энергию, которая в конечном итоге должна была полностью передаться на колеса. Этот побочный эффект прозвали «насосными потерями».

Попытаемся взглянуть на это с практической точки зрения на примере системы SOHC i-VTEC. Ведь именно устранение насосных потерь – преимущество нового i-VTEC на двигателях с одним распредвалом.

Все, что надо было сделать – это на низких оборотах двигателя дроссельную заслонку оставить открытой, а регулировку подачи топливно-воздушной смеси доверить системе i-VTEC. На деле, разумеется, не все так просто.

Следует учитывать следующий момент, что в период, когда дроссельная заслонка полностью открыта, во впускную систему поступает чрезмерно много воздуха и соответственно в цилиндры много топливно-воздушной смеси.

В стандартных двигателях на фазе впуска впускные клапаны открыты, поршень движется вниз к нижней мертвой точке (НМТ). Как только поршень достигает нижней мертвой точки, впускные клапаны синхронно закрываются, а поршень, начиная фазу сжатия, поднимается к верхней мертвой точке (ВМТ).

Но смесь не сгорает, как вы, наверное, подумали. Фишка системы состоит в том, что один из двух впускных клапанов в цилиндре после фазы впуска закрывается значительно позже второго.

Двигатель с SOHC i-VTEC работает несколько иначе. На фазе впуска – поршень движется к НМТ, впускные клапаны открыты. На фазе сжатия поршень начинает движение вверх к ВМТ. По условию работы i-VTEC в режиме экономии один из впускных клапанов остается открытым и под давлением движущегося вверх поршня, лишняя топливно-воздушная смесь, которая попала в цилиндр благодаря полностью открытой дроссельной заслонке, беспрепятственно возвращается во впускной коллектор.

Механизм SOHC i-VTEC

Механизм системы SOHC i-VTEC аналогичен механизму VTEC предыдущих поколений. Все двигатели с системой SOHC i-VTEC имеют два впускных клапана и два выпускных на каждый цилиндр, т.е 16 клапанов на 4 цилиндра. На каждую пару клапанов приходится 3 кулачка – два обычных крайних и один центральный большего профиля VTEC. Кулачки распредвала традиционно воздействуют на клапаны не непосредственно, а через рокеры, которых тоже три на два клапана.

При отключенной системе i-VTEC внешние кулачки обеспечивают открытие клапанов и каждый рокер работает независимо друг от друга, а центральный кулачок, хотя и вращается вместе с остальными, но работает вхолостую.

Как только двигатель переходит в режим работы, которую система Drive by Wire определяет как благоприятную для работы системы — посредством давления масла система смещает шток внутри рокеров таким образом, что два из трех рокеров работают, как единая конструкция. И с этого момента, рокер впускного клапана, который синхронизирован штоком с рокером кулачка системы VTEC, открывает клапан на величину и продолжительность в соответствии с профилем кулачка системы VTEC. Практически, как обычная система газораспределения с изменяемыми фазами VTEC, с той лишь разницей, что работают системы при разных условиях и в разных фазах.

Drive by Wire (DRW) или «управление по проводам» — электронная цифровая система управления автомобилем.

В обычной системе VTEC два внешних кулачка отвечают за работу двигателя на низких оборотах, а центральный кулачок системы VTEC, подключается на высоких оборотах, таким образом, обеспечивая большее высоту и период открытия, чтобы в цилиндры поступило как можно больше топливно-воздушной смеси. В «умном» SOHC i-VTEC все работает наоборот — рабочая зона системы находится в диапазоне от 1000 до 3500 оборотов в минуту. На «верхах» же мотор вступает в стандартный режим работы.

Однако, диапазон оборотов не единственный фактор по которому система Drive by Wire определяет момент включения и выключения системы. Иначе новый i-VTEC мало чем отличался бы от предшественников.

Новый SOHC i-VTEC в паре с «Drive by Wire» дополнительно определяет нагрузку на двигатель и в зависимости от ее величины принимает решение включать VTEC или нет.

Именно символ «i» в названии системы указывает на работу этих двух систем. Получается, что система VTEC работает при определенных оборотах двигателя и определенной величине нагрузки на двигатель. Поэтому «Drive by Wire», которая и определяет оптимальные условия, является наиважнейшей составляющей системы в целом.

Общий рабочий диапазон SOHC i-VTEC демонстрирует график. Красная зона на графике и есть благоприятная среда для работы системы.

Vvti принцип работы

Клапан VVT-i что это и для чего нужен

Что такое VVT-i?

VVT-i — это фирменная система газораспределительного механизма Toyota. С английского Variable Valve Timing with intelligence переводится как интеллектуальное изменение фаз газораспределения.

Принцип работы

Основным управляющим устройством является муфта VVT-i. Изначально фазы открытия клапанов спроектированы для хорошей тяги на низких оборотах. После того, как обороты значительно увеличиваются, а вместе с этим увеличивается давление масла, которое открывает клапан VVT-i. После того как клапан открыт, распределительный вал поворачивается на определенный угол относительно шкива. Кулачки имеют определенную форму и при повороте коленчатого вала открывают впускные клапана немного раньше, а закрывают позже, что благоприятно сказывается на увеличении мощности и крутящего момента на высоких оборотах.

При работе системы изменяется положение впускного вала относительно звездочки и относительно ВМТ и выпускного вала. 

Диаграмма работы VVT-i 1NZ-FE

Верхняя точка — TDC, она же ВМТ — верхняя мертвая точка.

Нижняя точка BDC она же НМТ — нижняя мертвая точка

Черной стрелкой обозначено открытие выпускного клапана — открывается он за 42 градуса до НМТ во время горения ТВС, закрывается на 2 градуса позже верхней мертвой точки, во время впуска.

Белая стрелка — впускной клапан. Причем стрелки две, одна соответствует максимально раннему открытию 33 градуса до ВМТ, вторая максимально позднему 7 градусов после ВМТ. В первом случае перекрытие клапанов составляет 35 градусов, во втором перекрытия совсем нет.

Режимы работы двигателя

1. Холостой ход

В этом режиме нужна стабильная работа на самых низких из возможных оборотов.

2. Низкие обороты и низкая нагрузка (режим обычной спокойной езды)

При спокойной езде давление во впускном коллекторе низкое, обороты небольшие. В этом режиме открытие клапанов сдвигается в раннюю стороу. Из-за низкого давления во впуске часть газов попадает во впуской коллектор, но благодаря достаточным оборотам нестабильности в работе двигателя не возникает. Мы получаем эффект ЕГР – рециркуляции выхлопных газов, когда часть газов из выхлопа повторно идет во впуск и догорает в камере сгорания, что положительно сказывается на расходе топлива и чистоте выхлопа.

3. Полная нагрузка

На полной нагрузке нужен максимальный момент.

Давление в коллекторе близко к атмосферному или выше, если имеет место наддув.

Во время перекрытия выхлопные газы засасывать во впуск не будет, кинетическая энергия выхлопных газов растет с повышением оборотов и улучшаются эффективность продувки и утрамбовки.

При разгоне на максимальной нагрузке на низких оборотах делаем перекрытие максимально большим, но так, чтобы не случилось перепродувки. При увеличении оборотов начинаем двигать угол в сторону более позднего закрытия впускного клапана, чтобы улучшить утрамбовку с увеличением оборотов. При этом, примерно в середине диапазона оборотов (для сток двигателя, как правило, 3500-4200) обязательно будет точка, в которой будет оптимальное по длительности время продувки и утрамбовки, и в этой точке произойдет максимальное наполнение цилиндра.

4. Полная нагрузка – большие обороты

После точки с максимальным наполнением (где максимально эффективно работает и продувка и запрессовка ТВС), наполнение начинает падать, но сдвигая впускной вал в более позднюю сторону, мы обеспечиваем увеличение времени запрессовки, тем самым обьемную эффективность и наполнение.

Где находится VVTI-клапан и как его проверить?

Устройство клапана системы VVTI автомобилей «Тойота»

Элемент состоит из корпуса. В наружной части находится управляющий соленоид, отвечающий за движение клапана. Кроме этого есть уплотнительные кольца и разъем для подключения датчика.

Общий принцип работы системы

После того как этот клапан откроется, распределительный вал повернется в определенное положение относительно шкива. Кулачки на валу имеют специальную форму, и в процессе поворота элемента впускные клапаны будут открываться немного раньше. Соответственно, позже закрываться. Это должно самым лучшим образом сказаться на мощности и крутящем моменте двигателя на высоких оборотах.

Подробное описание работы

Главный управляющий механизм системы- муфта — устанавливается на шкиву распределительного вала двигателя. Корпус его соединяется со звездочным либо зубчатым шкивом.

Ротор соединяется непосредственно с распределительным валом.

Масло из системы смазки подается с одной либо с двух сторон к каждому лепестку ротора на муфте, заставляя тем распределительный вал поворачиваться.

Когда двигатель не запущен, система автоматически устанавливает максимальные углы задержки. Они соответствуют самому позднему открытию и закрытию впускных клапанов.

Когда мотор запустится, давление масла недостаточно сильное, чтобы открыть VVTI-клапан.

Чтобы избежать любых ударов в системе, ротор соединяется с корпусом муфты штифтом, который при росте давления смазки будет отжиматься самим маслом.

Управление работой системы осуществляется посредством специального клапана.

По сигналу с ЭБУ электрический магнит при помощи плунжера начнет перемещать золотник, тем самым пропуская масло в одном либо в другом направлении.

Когда мотор остановлен, этот золотник двигается за счет пружины так, чтобы выставить максимальный угол задержки.

Чтобы повернуть распределительный вал на определенный угол, масло под высоким давлением посредством золотника подводится к одной из сторон лепестков на роторе. Одновременно с этим открывается на слив специальная полость. Она расположена с другой стороны лепестка. После того как ЭБУ поймет, что распределительный вал повернут на нужный угол, каналы шкива перекрываются и он будет далее удерживаться в этом положении.

Типовые симптомы неполадок системы VVTI

Если автомобиль не удерживает холостые обороты на одном уровне, это значит, что VVTI-клапан не работает так, как нужно. Также о различных неполадках в системе скажет «торможение» двигателя.

Часто при проблемах с этим механизмом изменения фаз отсутствует возможность мотора работать на низких оборотах.

О проблемах с клапаном может говорить ошибка P1349. Если на прогретом силовом агрегате высокие холостые обороты, автомобиль совсем не едет.

Возможные причины неисправности клапана

1. Обрывы в катушке. В данном случае элемент не сможет верно реагировать на передачи напряжения. Диагностика неисправности легко осуществляется при помощи проверки измерения сопротивления обмотки катушки датчика.

2. Заедания в штоке из-за загрязнений в канале. Избавиться от этого можно путём отмачивания или вымачивания элемента в специальных жидкостях.

Как очистить клапан?

Многие неисправности можно вылечить при помощи очистки датчика. Для начала нужно найти клапан VVTI. Где находится этот элемент, можно увидеть на фото ниже. Он обведен на картинке.

Для демонтажа датчика снимают пластиковую крышку силового агрегата. Затем снимают металлическую крышку, которая фиксирует генератор. Под крышкой будет виден нужный клапан. С него необходимо отключить электрический разъем и открутить болт. Ошибку здесь допустить очень трудно – это болт здесь единственный. Затем клапан VVTI 1NZ можно снять. Но для этого не нужно тянуть за разъем. Он очень плотно прилегает к датчику. Также на нем устанавливается резиновое уплотнительное кольцо.

Очистку можно провести с помощью жидкостей для очистки карбюраторов. Чтобы полностью прочистить систему, снимают и фильтр. Этот элемент находится под клапаном – он представляет собой заглушку, в которой имеется отверстие под шестигранник. Фильтр также нужно очищать этой жидкостью. После всех операций остается только собрать все в обратном порядке, а затем установить ремень генератора, не упираясь при этом в сам клапан.

Как проверить клапан VVTI?

Проверить, работает ли клапан, очень просто. Для этого подают на контакты датчика напряжение в 12 В. Необходимо помнить, что долго держать элемент под напряжением нельзя, так как он не может работать в таких режимах столько времени. В момент подачи напряжения шток втянется внутрь. А когда цепь разомкнется, он вернется обратно.

Если шток перемещается легко, то клапан полностью исправен. Его нужно только промыть, смазать и можно эксплуатировать. Если же он работает не так, как нужно, тогда поможет ремонт либо замена клапана VVTI.

Самостоятельный ремонт клапана

Сперва демонтируют регулирующую планку генератора. Затем снимают крепеж замка капота. Это откроет доступ к осевому болту генератора. Далее откручивают болт, который удерживает сам клапан, и снимают его. После снимают фильтр. Если последний элемент и клапан загрязнены, тогда эти детали очищают. Ремонт представляет собой проверку и смазку. Также можно заменить уплотняющее кольцо. Более серьезный ремонт не представляется возможным. Если деталь не работает, проще и дешевле заменить ее на новую.

Самостоятельная замена клапана VVTI

Часто очистка и смазка не обеспечивает необходимый результат, и тогда встает вопрос полной замены детали. К тому же многие автовладельцы после замены утверждают, что машина стала работать значительно лучше и снизился расход топлива.

Для начала снимают регулирующую планку генератора. Затем снимают крепеж замка капота и получают доступ к болту генератора. Откраивают болт, которым удерживается нужный клапан. Старый элемент можно вытащить и выбросить, а на место старого ставят новый. Затем закручивают болт, и автомобиль можно эксплуатировать.

Источники:

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 3 чел.
Средний рейтинг: 5 из 5.

устройство и очистка своими руками

На чтение 6 мин. Просмотров 10.5k.

Клапан vvti является системой смещения газораспределяющих фаз автомобильного двигателя внутреннего сгорания от производителя фирмы «Тойота».

Клапан Vvt-i является системой смещения газораспределяющих фаз автомобильного двигателя внутреннего сгорания от производителя фирмы Тойота.

В данной статье размещены ответы на такие довольно распространенные вопросы:

  • Что собой представляет клапан Vvt-i?
  • Устройство vvti;
  • В чем заключается принцип действия vvti?
  • Как правильно проводится чистка vvti?
  • Как провести ремонт клапана?
  • Как правильно проводится замена?
Клапан VVTI

Устройство Vvt-i

Основной механизм размещается в шкиве распредвала. Корпус соединяется вместе с зубчастым шкивом, а ротор с распредваликом. Смазывающее масло доставляется к механизму клапана с любой из сторон каждого лепесткового ротора. Таким образом клапана и распределительный валик начинает вращаться. В тот момент, когда автомобильный двигатель находится в заглушенном состоянии устанавливается максимальный угол задержания. Это означает что определяется угол, который соответствует самому последнему произведению открытия и закрытия впускающих клапанов. Благодаря тому, что ротор соединен с корпусом при помощи стопорного штифта сразу после запуска, когда давление маслянистой магистрали недостаточно для произведения эффективного руководства клапаном, не могут возникать какие-либо удары в механизме клапана. После этого стопорной штифт открывается при помощи давления, которое оказывает на него масло.

В чем же заключается принцип действия Vvt-i? Vvt-i обеспечивает возможность плавного изменения газораспределительных фаз, соответствуя со всеми условиями функционирования автомобильного двигателя. Такая функция обеспечивается благодаря произведению поворота распредвала впускающих клапанов по отношению к валикам выпускающих клапанов, по углу поворачивания коленчатого валика от сорока до шестидесяти градусов. В итоге происходит изменение момента начального открывания впускающего клапана, а также количество времени, когда выпускающие клапаны находится в закрытом положении, а выпускающие в открытом. Руководство представленным типом клапана происходит благодаря сигналу, который исходит от блока руководства. После поступления сигнала электронный магнит по плунжеру передвигает главный золотник, пропуская при этом масло в любом направлении.

В тот момент, когда автомобильный двигатель не функционирует, золотник передвигается при помощи пружинки так, чтобы расположиться максимальный угол задержки.

Для произведения распредвала масло под определенным давлением с помощью золотника перемещается в одну из сторон ротора. В этот же момент происходит открытие полости с другой стороны лепестков для сливания масла. После определения блоком руководства расположения распределительного валика, все каналы шкива закрываются, таким образом, он удерживается в зафиксированном положении. Работа механизма данного клапана осуществляется несколькими условиями функционирования автомобильного двигателя с различными режимами.

Установленный клапан VVTI

Всего существует семь режимов функционирования автомобильного двигателя и вот их перечень:

  1. Передвижение на холостом ходу;
  2. Передвижение на низкой нагрузке;
  3. Передвижение со средней нагрузкой;
  4. Передвижение с высокой нагрузкой и низким уровнем частоты вращения;
  5. Передвижение с высокой нагрузкой и высоким уровнем частоты вращения;
  6. Передвижение с низкой температурой жидкости охлаждения;
  7. Во время запуска и остановки двигателя.

Процедура самостоятельного очищения а Vvt-i

Нарушение функционирования, как правило, сопровождается множеством признаков, поэтому логичнее всего будет сначала рассмотреть эти признаки.

Итак, к основным признакам нарушения нормального функционирования являются такие:

  • Автомобиль резко глохнет;
  • Транспортное средство не может удерживать обороты;
  • Заметно каменеет тормозная педаль;
  • Не тянет педаль тормоза.

Теперь можно переходить к рассмотрению процесса очищения Vvti. Проводить очищение Vvti мы будем пошагово.

Итак, алгоритм проведения очищения Vvti:

  1. Снимаем пластмассовую крышку автомобильного двигателя;
  2. Откручиваем болтики и гаечки;
  3. Снимаем железную крышку, основной задачей которой является фиксация генератора машины;
  4. Снимаем с Vvti разъем;
  5. Откручиваем болтик на десять. Не бойтесь, вы не сможете допустить ошибку, так как он там только один.
  6. Снимаем Vvti. Только ни в коем случае не тяните за разъем, потому как он достаточно плотно прилегает к нему и на нем размещено уплотняющее кольцо.
  7. Очищаем Vvti при помощи любого очистителя, который предназначен для очищения карбюратора;
  8. Для полного очищения Vvti снимаем фильтр системы Vvti. Представленный фильтр располагается под клапаном и имеет вид заглушки с отверстием для шестигранника, но этот пункт необязателен.
  9. Очищение завершено вам остается только собрать все в обратном порядке и натянуть ремень, не упираясь в Vvti.
Самостоятельный ремонт Vvt-i

Довольно часто возникает необходимость проведения ремонта клапана, так как просто его очищение не всегда эффективно.

Итак, для начала давайте разберемся с основными признаками необходимости проведения ремонта:

  • Автомобильный двигатель не удерживает холостые обороты;
  • Тормозит двигатель;
  • Невозможно передвижение автомобиля на низких оборотах;
  • Нет тормозного усилителя;
  • Плохо переключаются передачи.

Давайте рассмотрим основные причины неисправности клапана:

  • Оборвалась катушка. В таком случае клапан не сможет правильно реагировать на передачу напряжения. Определить данное нарушение можно с помощью произведения измерения сопротивления обмотки.
  • Заедает шток. Причиной заедания штока может послужить накопление грязи в канале штока или деформации резинки, которая располагается внутри штока. Удалить грязь из каналов можно отмачиванием или же отмачиванием.

Алгоритм проведения ремонта клапана:

  1. Снимаем регулирующую планку генератора автомобиля;
  2. Снимаем крепеж замочка капота машины, благодаря этому вы сможете получить доступ к осевому болтику генератора;
  3. Откручиваем болтик, который закрепляет клапан;
  4. Снимаем клапан. Только ни в коем случае не тяните за разъем, потому как он достаточно плотно прилегает к нему и на нем размещено уплотняющее кольцо.
  5. Снимаем фильтр системы Vvti. Представленный фильтр располагается под клапаном и имеет вид заглушки с отверстием для шестигранника.
  6. Если клапан и фильтр сильно загрязнены, то очищаем их при помощи специальной жидкости для очищения карбюратора;
  7. Проверяем работоспособность клапана, при помощи кратковременной подачи двенадцати вольт на контакты. Если вас устраивает, как он функционирует, то можете остановиться на этом этапе, если же нет, то выполняйте следующие действия.
  8. Ставим пометки на клапане, для того чтобы не допустить ошибку во время обратной установки;
  9. С помощью маленькой отвертки разбираем клапан с двух сторон;
  10. Достаем шток;

  1. Промываем и очищаем клапан;
  2. Если кольцо клапана деформировано, то заменяем его на новое;
  3. Завальцуйте внутреннюю сторону клапана. Сделать это можно при помощи полотка, надавливаниями на шток, для прижатия нового уплотняющего кольца;
  4. Смените масло, которое находится в катушке;
  5. Заменяем кольцо, которое располагается с внешней стороны;
  6. Завальцуйте внешнюю сторону клапана, для прижатия внешнего кольца;
  7. Ремонт клапана завершен и вам остается только собрать все в обратном порядке.
Процедура самостоятельной замены клапана Vvt-i

Нередко очищение и ремонт клапана не дает особы результатов и тогда возникает необходимость полной его замены. К тому же, многие автолюбители утверждают, что после проведения замены клапана транспортное средство станет работать намного лучше и затраты топлива снизятся приблизительно до десяти литров.

Следовательно, возникает вопрос: Как правильно нужно заменять клапан?. Проводить замену клапана мы будем пошагово.

Итак, алгоритм замены клапана:

  1. Снимите регулирующую планку генератора автомобиля;
  2. Снимите крепеж замочка капота машины, благодаря этому вы сможете получить доступ к осевому болтику генератора;
  3. Откручиваем болтик, который закрепляет клапан;
  4. Вытаскиваем старый клапан;
  5. Устанавливаем новый клапан на место старого;
  6. Закручиваем болтик, закрепляющий клапан;
  7. Замена клапана завершена и вам остается только собрать все в обратном порядке.

Где находится VVTI-клапан и как его проверить?

VVTI – это разработанная «Тойотой» система изменения фаз газораспределения. Если перевести эту аббревиатуру с английского языка, то данная система отвечает за интеллектуальное смещение фаз. Сейчас на современных японских двигателях установлено второе поколение механизмов. А впервые VVTI начали устанавливать на автомобили с 1996 года. Система представляет собой муфту и специальный VVTI-клапан. Последний выполняет роль датчика.

Устройство клапана системы VVTI автомобилей «Тойота»

Элемент состоит из корпуса. В наружной части находится управляющий соленоид. Он отвечает за движение клапана. Также в устройстве имеются уплотнительные кольца и разъем для подключения датчика.

Общий принцип работы системы

Главное управляющее устройство в данной системе смещения фаз газораспределения – это муфта VVTI. По умолчанию разработчики двигателя проектировали фазы открытия клапанов так, чтобы получить хорошую тягу на низких оборотах мотора. По мере роста оборотов растет и давление масла, за счет которого открывается клапан VVTI. «Тойота-Камри» и ее двигатель 2,4 литра работает по такому же принципу.

После того как этот клапан откроется, распределительный вал повернется в определенное положение относительно шкива. Кулачки на валу имеют специальную форму, и в процессе поворота элемента впускные клапаны будут открываться немного раньше. Соответственно, позже закрываться. Это должно самым лучшим образом сказаться на мощности и крутящем моменте двигателя на высоких оборотах.

Подробное описание работы

Главный управляющий механизм системы (а это муфта) устанавливается на шкиву распределительного вала двигателя. Корпус его соединяется со звездочным либо зубчатым шкивом. Ротор соединяется непосредственно с распределительным валом. Масло из системы смазки подается с одной либо с двух сторон к каждому лепестку ротора на муфте, заставляя тем распределительный вал поворачиваться. Когда двигатель не запущен, система автоматически устанавливает максимальные углы задержки. Они соответствуют самому позднему открытию и закрытию впускных клапанов. Когда мотор запустится, давление масла недостаточно сильное, чтобы открыть VVTI-клапан. Чтобы избежать любых ударов в системе, ротор соединяется с корпусом муфты штифтом, который при росте давления смазки будет отжиматься самим маслом.

Управление работой системы осуществляется посредством специального клапана. По сигналу с ЭБУ, электрический магнит при помощи плунжера начнет перемещать золотник, тем самым пропуская масло в одном либо в другом направлении. Когда мотор остановлен, этот золотник двигается за счет пружины так, чтобы выставить максимальный угол задержки. Чтобы повернуть распределительный вал на определенный угол, масло под высоким давлением посредством золотника подводится к одной из сторон лепестков на роторе. Одновременно с этим открывается на слив специальная полость. Она расположена с другой стороны лепестка. После того как ЭБУ поймет, что распределительный вал повернут на нужный угол, каналы шкива перекрываются и он будет далее удерживаться в этом положении.

Типовые симптомы неполадок системы VVTI

Итак, система должна изменять фазы работы газораспределительного механизма. Если с ней возникают какие-либо проблемы, тогда автомобиль не сможет нормально функционировать в одном либо в нескольких рабочих режимах. Можно выделить несколько симптомов, которые скажут о неисправностях.

Так, автомобиль не удерживает холостые обороты на одном уровне. Это говорит о том, что VVTI-клапан не работает так, как нужно. Также о различных неполадках в системе скажет «торможение» двигателя. Часто при проблемах с этим механизмом изменения фаз отсутствует возможность мотора работать на низких оборотах. Еще о проблемах с клапаном может говорить ошибка P1349. Если на прогретом силовом агрегате высокие холостые обороты, автомобиль совсем не едет.

Возможные причины неисправности клапана

Основных причин неисправностей клапана не так уж и много. Можно выделить две, которые встречаются особенно часто. Так, VVTI-клапан может выходить из строя по причине того, что есть обрывы в катушке. В данном случае элемент не сможет верно реагировать на передачи напряжения. Диагностика неисправности легко осуществляется при помощи проверки измерения сопротивления обмотки катушки датчика.

Вторая причина, по которой клапан VVTI (Toyota) работает неправильно или же не работает вообще – это заедания в штоке. Причиной таких заеданий может быть банальная грязь, которая со временем скопилась в канале. Также возможно, деформирована уплотняющая резинка внутри клапана. В этом случае восстановить механизм очень просто – достаточно очистить грязь оттуда. Это можно сделать с помощью отмачивания или вымачивания элемента в специальных жидкостях.

Как очистить клапан?

Многие неисправности можно вылечить при помощи очистки датчика. Для начала нужно найти клапан VVTI. Где находится этот элемент, можно увидеть на фото ниже. Он обведен на картинке.

Для демонтажа датчика снимают пластиковую крышку силового агрегата. Затем снимают металлическую крышку, которая фиксирует генератор. Под крышкой будет виден нужный клапан. С него необходимо отключить электрический разъем и открутить болт. Ошибку здесь допустить очень трудно – это болт здесь единственный. Затем клапан VVTI 1NZ можно снять. Но для этого не нужно тянуть за разъем. Он очень плотно прилегает к датчику. Также на нем устанавливается резиновое уплотнительное кольцо.

Очистку можно провести с помощью жидкостей для очистки карбюраторов. Чтобы полностью прочистить систему, снимают и фильтр. Этот элемент находится под клапаном – он представляет собой заглушку, в которой имеется отверстие под шестигранник. Фильтр также нужно очищать этой жидкостью. После всех операций остается только собрать все в обратном порядке, а затем установить ремень генератора, не упираясь при этом в сам клапан.

Как проверить клапан VVTI?

Проверить, работает ли клапан, очень просто. Для этого подают на контакты датчика напряжение в 12 В. Необходимо помнить, что долго держать элемент под напряжением нельзя, так как он не может работать в таких режимах столько времени. В момент подачи напряжения шток втянется внутрь. А когда цепь разомкнется, он вернется обратно.

Если шток перемещается легко, то клапан полностью исправен. Его нужно только промыть, смазать и можно эксплуатировать. Если же он работает не так, как нужно, тогда поможет ремонт либо замена клапана VVTI.

Самостоятельный ремонт клапана

Сперва демонтируют регулирующую планку генератора. Затем снимают крепеж замка капота. Это откроет доступ к осевому болту генератора. Далее откручивают болт, который удерживает сам клапан, и снимают его. После снимают фильтр. Если последний элемент и клапан загрязнены, тогда эти детали очищают. Ремонт представляет собой проверку и смазку. Также можно заменить уплотняющее кольцо. Более серьезный ремонт не представляется возможным. Если деталь не работает, проще и дешевле заменить ее на новую.

Самостоятельная замена клапана VVTI

Часто очистка и смазка не обеспечивает необходимый результат, и тогда встает вопрос полной замены детали. К тому же многие автовладельцы после замены утверждают, что машина стала работать значительно лучше и снизился расход топлива.

Для начала снимают регулирующую планку генератора. Затем снимают крепеж замка капота и получают доступ к болту генератора. Откраивают болт, которым удерживается нужный клапан. Старый элемент можно вытащить и выбросить, а на место старого ставят новый. Затем закручивают болт, и автомобиль можно эксплуатировать.

Заключение

Современные автомобили одновременно и хорошие, и плохие. Плохие они тем, что не каждую операцию, связанную с ремонтом и обслуживанием, можно выполнить самостоятельно. Но вот замену этого клапана своими руками выполнить можно, и это большой плюс японскому производителю.

(VVT) Система изменения фаз газораспределения — как это работает

(VVT) Система изменения фаз газораспределения — Как это работает — Как это может выйти из строя

(VVT) Система изменения фаз газораспределения представляет собой двухступенчатую систему фазовращателя с гидравлическим управлением.

Итак, по мере совершенствования технологий двигателей и их удешевления; (VVT) система изменения фаз газораспределения продолжает повышать производительность и экономичность.
В настоящее время производители применяют различные (VVT) системы изменения фаз газораспределения, конструктивные подходы и технологии.Самое главное, чтобы контролировать фазы газораспределения и как долго; впускной и выпускной клапаны остаются открытыми.

Система изменения фаз газораспределения (VVT) использует давление моторного масла для изменения положения впускного распределительного вала. Как следствие, оптимизация фаз газораспределения впускных клапанов для условий эксплуатации. Примечание. Учитывается только потребление.

Также, в зависимости от потребностей двигателя, система может вращать распределительный вал; в опережающем или запаздывающем направлении. Регулировка времени перекрытия между закрытием выпускного клапана и открытием впускного клапана; приводит к повышению эффективности двигателя.

(VVT) Технология изменения фаз газораспределения, управляет тремя ключевыми характеристиками; впускных и выпускных клапанов:

  • Фазы газораспределения – Точки движения поршня, в которых клапаны открываются и закрываются.
  • Продолжительность — как долго клапаны остаются открытыми.
  • Подъем клапана — Насколько физически открываются клапаны (отверстие их открытия).

Для этого используются различные датчики, такие как датчики расхода воздуха и положения распредвала; передать информацию в ЭБУ автомобиля.Наконец, с помощью различных механизмов можно управлять вышеупомянутыми характеристиками клапана.

Итак, как работает система изменения фаз газораспределения (VVT)
(VVT) регулировка фаз газораспределения, изменяет момент подъема клапанов; для повышения производительности и экономичности в определенных дорожных ситуациях.
(VVT) Механизм изменения фаз газораспределения

Визуализируйте это как полую, закрытую шестерню внутри; в котором две звездообразные шестерни размещены одна внутри другой. Внешняя шестерня является соединением шестерни распределительного вала; к ремню или цепи, которая приводит его в движение.Внутренняя шестерня соединяется с самим распределительным валом. Обычно они сцеплены друг с другом, зубчатое колесо против зубчатого колеса и вращаются с одинаковой скоростью.

Итак, при подаче масла шестерни можно разъединить. Следовательно, меняются их скорости относительно друг друга на мгновение. Наконец, это увеличивает или уменьшает скорость вращения распределительного вала; по отношению к фазе привода двигателя. Кроме того, это, в свою очередь, изменяет продолжительность подъема клапана, чтобы контролировать впуск и выпуск.

(VVT) Система изменения фаз газораспределения в основном бывает двух типов:
  • Одинарный – (VVT) – Постоянно изменяет синхронизацию впускного распределительного вала.
  • Двойной — (VVT) — постоянно изменяет фазы газораспределения впускного и выпускного распределительных валов.

Итак, двойная (VVT) система помогает двигателю более эффективно «вдыхать» и «выдыхать». Поэтому, постоянно регулируя синхронизацию впускных и выпускных клапанов; чтобы помочь улучшить мощность, топливную экономичность и выбросы выхлопных газов.

(VVT-i) — регулировка фаз газораспределения

Кроме того, Dual (VVT) помогает обеспечить:
  • Повышенная топливная экономичность на всех оборотах двигателя.
  • Более высокий крутящий момент на низких оборотах с меньшей вероятностью «детонации» двигателя, снижающего мощность.
  • Превосходная мощность при более высоких оборотах двигателя без лишнего шума и вибрации.
  • Снижение выбросов на всех оборотах двигателя.

Кроме того, двойной (VVT) помогает двигателю обеспечить необходимую мощность и топливную экономичность; при сохранении оптимального качества выбросов.

Итак, в чем разница между одиночным и дуэльным (VVT)
  • Технология Single (VVT), регулирует фазы газораспределения только впускных клапанов.
  • Dual (VVT), регулирует как впускные, так и выпускные клапаны (двойного действия).

В обоих случаях распределительный вал имеет два профиля для впускных клапанов:

  • Экономичный профиль, (ниже 6000 об/мин).
  • Профиль производительности (выше 6000 об/мин).

Следовательно, когда (VVT) «срабатывает», давление масла воздействует на привод; который немного смещает распределительный вал, включая настройку «производительность».

(VVT) Performance Setting

Таким образом, с двойной (VVT) — системой изменения фаз газораспределения происходит то же самое; разница на этот раз в том, что выпускные клапаны активированы.Теперь распределительный вал имеет по два профиля, как для впуска, так и для выпуска. Dual (VVT) также сводит к минимуму давление сжатия при запуске/остановке; путем регулировки последовательностей перекрытия между впускными и выпускными клапанами.

Возможность одновременного открытия впускного и выпускного клапанов; также обеспечивает максимальную очистку внутрицилиндрового заряда. Разрешение очень высокой (RPM) и огромной мощности; от того же двигателя, который может похвастаться впечатляющим крутящим моментом на низких оборотах.

Преимущества, имевшиеся с (VVT) регулировкой фаз газораспределения Включают:
  • Улучшенная производительность и экономичность одновременно.
  • Более быстрый нагрев каталитического нейтрализатора за счет улучшенного управления выхлопом.
  • Повышенная эффективность в широком диапазоне рабочих скоростей двигателя.
  • Улучшенный, синхронизация двигателя.

Общие коды ошибок двигателя Чтение кодов неисправностей двигателя

Два распространенных кода двигателя: P0011 и P0021 (датчик положения распределительного вала «ряд 1» и датчик положения распределительного вала «ряд 2» соответственно).

Некоторые общие области для поиска проблем:
  • Фазы газораспределения
  • Клапан управления маслом
  • Сетчатый фильтр клапана управления маслом
  • Распределительный вал/шестерни
  • Электрические разъемы и провода
  • (ПКМ) или (ЕСМ)

Следовательно, грязное масло может привести к образованию шлама; которые могут забить масляные каналы в кулачке, что приведет к выходу кулачка из строя.Таким образом, отсутствие регулярного технического обслуживания является большой проблемой для систем (VVT).

Замена масла сейчас важнее, чем когда-либо прежде Отсутствие регулярных замен масла

Самое главное, соленоиду (VVT) для правильной работы требуется чистое моторное масло. Итак, что происходит, когда моторное масло забивается мусором, грязью или другими посторонними частицами? Он имеет тенденцию забивать проход от соленоида к цепи и шестерне (VVT).

Таким образом, отсутствие регулярной замены масла может привести к повреждению соленоида (VVT), цепи (VVT) и зубчатой ​​передачи.Итак, чтобы избежать этой ситуации, обязательно замените моторное масло; в соответствии с рекомендациями производителя автомобиля. Низкий уровень масла также может вызвать проблемы с соленоидом (VVT) и другими компонентами системы газораспределения.

С (VVT) системой изменения фаз газораспределения (у вас больше нет клапана (EGR)) Клапан рециркуляции отработавших газов (EGR)

Таким образом, системы (VVT) сделали клапаны рециркуляции отработавших газов (EGR) устаревшими. (EGR) клапаны возвращают смог, вызывающий закись азота, обратно во впускной коллектор.Следовательно, система (VVT) контролирует время, когда инертный газ остается в камере для следующего цикла сгорания. Кроме того, контроль температуры сгорания и производства оксидов азота.

Заключение

Итак, большинство (VVT) систем и их компонентов зависят от постоянной циркуляции моторного масла. Наконец, если есть какие-либо проблемы с потоком масла, многие детали могут выйти из строя навсегда.

Спасибо!

Система изменения фаз газораспределения (VVT)

Переменный клапан ГРМ (ВВТ)

Базовый Теория

После многоклапанная технология стала стандартом в конструкции двигателя, регулировка фаз газораспределения становится следующим шагом к увеличению мощности двигателя, независимо от мощности или крутящего момента.

Как вы знаете, клапаны активируют дыхание двигателя. время дыхания, т. то есть время впуска и выпуска воздуха контролируется формой и фазой угол кулачков. Для оптимизации дыхания двигатель требует разных фаз газораспределения на разных скоростях. Когда обороты увеличиваются, продолжительность такта впуска и выпуска уменьшается настолько, что приток свежего воздуха становится невозможным. достаточно быстро входит в камеру сгорания, при этом выхлоп становится не быстрым достаточно, чтобы покинуть камеру сгорания.Поэтому лучшее решение — открыть впускные клапаны закрываются раньше, а выпускные клапаны закрываются позже. Другими словами, Перекрытие между периодом впуска и периодом выпуска должно быть увеличивается с увеличением оборотов.
 

 

 
Без переменной Технология Valve Timing инженеры привыкли выбирать лучший компромисс времени. Например, фургон может иметь меньшее количество перекрытий из-за преимуществ низкой скорости. выход.Гоночный двигатель может использовать значительное перекрытие для высокой скорости. власть. Обычный седан может принять оптимизацию фаз газораспределения для средних оборотов, так что как управляемость на низких скоростях, так и выходная мощность на высоких скоростях будут не слишком жертвовать. Независимо от того, какой из них, результат просто оптимизирован для определенной скорости.

С Регулируемые фазы газораспределения, мощность и крутящий момент могут быть оптимизированы в широком диапазоне оборотов. Наиболее заметные результаты:
 

    • Двигатель может увеличить обороты выше, что увеличивает пиковую мощность.Например, 2-литровый Neo VVL от Nissan. выходная мощность двигателя на 25% больше пиковой мощности, чем у его версии без VVT.
    • Низкооборотный крутящий момент увеличивается, что улучшает управляемость. Например, двигатель Fiat Barchetta 1,8 VVT обеспечивает 90% пикового крутящего момента. от 2000 до 6000 об/мин.

 
Более того, все эти преимущества приходят без каких-либо недостатков.

Переменная Подъемник

В некоторых конструкции подъем клапана также может варьироваться в зависимости от частоты вращения двигателя.На высоте скорость, более высокая подъемная сила ускоряет впуск и выпуск воздуха, тем самым еще больше оптимизируя дыхание. Конечно, на меньшей скорости такой подъем приведет к обратным эффектам, таким как ухудшение процесса смешивания топлива и воздуха, что снижает мощность или даже приводит к пропуску зажигания. Поэтому лифт должен изменяться в зависимости от частоты вращения двигателя.

1) VVT с заменой кулачка

Honda впервые применила VVT для дорожных автомобилей в конце 80-х. запустив свою знаменитую систему VTEC (электронное управление синхронизацией клапанов).Первый появился в Civic, CRX и NS-X, затем стал стандартным для большинства моделей.

Вы можете рассматривайте это как 2 набора кулачков, имеющих разные формы, чтобы обеспечить разную синхронизацию и поднимать. Один комплект работает при нормальной скорости, скажем, ниже 4500 об/мин. Другая замены на более высокой скорости. Очевидно, что такая компоновка не позволяет изменение фаз газораспределения, поэтому двигатель работает скромно ниже 4500 об/мин, но выше этого он внезапно превратится в дикое животное.

Это система действительно улучшает пиковую мощность — она ​​может поднять красную линию почти до 8000 об / мин. (даже 9000 об/мин в S2000), как двигатель с гоночными распредвалами, и увеличить максимальную мощность на целых 30 л.с. для 1.6-литровый двигатель !! Однако, чтобы использовать такой прирост мощности, вам нужно поддерживать кипение двигателя выше порог оборотов, поэтому требуется частое переключение передач. Как низкоскоростной крутящий момент прироста слишком мало (помните, кулачки нормального двигателя обычно служат поперек 0-6000 об/мин, при этом «медленные кулачки» двигателя VTEC еще нужно обслужить от 0 до 4500 об / мин), управляемость не будет слишком впечатляющей. Вкратце, Система смены кулачков лучше всего подходит для спортивных автомобилей.

Хонда уже улучшил свой двухступенчатый VTEC до трехступенчатого для некоторых моделей.Конечно, чем больше у него стадии, тем более утонченным он становится. Он по-прежнему предлагает менее широкий распространение крутящего момента, как и другие бесступенчатые системы. Однако смена кулачка система остается самой мощной VVT, так как никакая другая система не может изменить Lift клапана, как это делает.

Преимущество:

Мощный на верхнем конце

Недостаток:

2 или только 3 ступени, непрерывные; нет большого улучшения крутящего момента; комплекс

Кто используй это ?

Хонда VTEC, Mitsubishi MIVEC, Nissan Neo VVL.

Honda новейший трехступенчатый VTEC был применен в Civic sohc двигатель в японии. Механизм имеет 3 кулачка с разной синхронизацией и профилем подъема. Обратите внимание, что размеры у них тоже разные — средний кулачок (быстрый тайминг, высокий подъем), как показано на диаграмме выше, является самым большим; правый боковой кулачок (медленно тайминг, средний подъем) среднего размера; левый боковой кулачок (медленная синхронизация, низкая лифт) самый маленький.

Это механизм работает так:

Ступень 1 (низкая скорость): 3 части коромысла движется самостоятельно. Поэтому левый коромысло, которое приводит в действие левый впускной клапан, приводится в действие левым кулачком с низким подъемом. Правый коромысло, которое приводит в действие правый впускной клапан, приводится в действие правым кулачком среднего подъема. Обе время кулачков относительно медленное по сравнению со средним кулачком, который не приводит в действие клапан сейчас.

Этап 2 (средняя скорость) : гидравлическое давление (на картинке окрашены в оранжевый цвет) соединяет левое и правое коромысла вместе, оставив средний коромысло и кулачок работать сами по себе.Поскольку правый кулачок больше левого кулачка, эти соединенные коромысла на самом деле управляется правым кулачком. В результате оба впускных клапана работают медленно, но средний подъем.

Этап 3 (высокая скорость): гидравлическое давление соединяется все 3 коромысла вместе. Поскольку средний кулачок самый большой, оба впускных клапаны фактически приводятся в действие этим быстрым кулачком. Таким образом, быстрые сроки и высокая подъем достигается в обоих клапанах.

Очень похоже на систему Honda, но правильная и левые кулачки с таким же профилем.На малой скорости оба коромысла приводятся в движение. независимо от этих медленных, низкоподъемных правого и левого кулачков. На высоте скорости, 3 коромысла соединены вместе так, что они приводятся в движение быстродействующий средний кулачок с высоким подъемом.

Вы может подумать, что это должна быть двухступенчатая система. Нет это не так. Начиная с Ниссан Нео ВВЛ дублирует тот же механизм в выпускном распредвале, 3 ступени могли быть получен следующим образом:

Этап 1 (низкая скорость): впускной и выпускной клапаны работают в медленном режиме.
Этап 2 (средняя скорость): быстро конфигурация впуска + конфигурация медленного выпуска.
Ступень 3 (высокая скорость): оба впускные и выпускные клапаны находятся в быстрой конфигурации.

 

2) Распредвал VVT

Распредвал VVT самый простой, дешевый и наиболее часто используемый. механизм на данный момент. Тем не менее, его прирост производительности также наименьший, очень правда справедливо.

В принципе, он изменяет фазы газораспределения за счет смещения фазового угла распределительных валов.Для например, на высокой скорости впускной распредвал будет проворачиваться вперед на 30 так для более раннего приема. Это движение контролируется системой управления двигателем. система в соответствии с необходимостью и приводится в действие шестернями гидравлического клапана.
 

Обратите внимание, что VVT с фазировкой кулачков не может изменять продолжительность открытия клапана. Он просто позволяет раньше или позже открыть клапан. Ранее открытые приводит к более раннему закрытию, конечно. Он также не может изменять подъем клапана, в отличие от кулачковый VVT.Тем не менее, VVT с фазировкой кулачка является самой простой и дешевой формой VVT, потому что для каждого распределительного вала требуется только один гидравлический привод фазирования, в отличие от другие системы, использующие индивидуальный механизм для каждого цилиндра.

Непрерывный или Дискретный

Проще VVT с фазировкой кулачка имеет на выбор всего 2 или 3 фиксированных угла переключения, например либо 0, либо 30. Лучшая система имеет непрерывное переменное смещение, скажем, любое произвольное значение от 0 до 30 зависит от оборотов в минуту.Очевидно, что это обеспечивает наиболее подходящие фазы газораспределения на любой скорости, таким образом значительно повысить гибкость двигателя. Более того, переход настолько гладкий, что почти не заметен.

Впуск и выхлоп

Некоторые дизайн, такой как система BMW Double Vanos, имеет VVT с фазировкой фаз газораспределения как на впускном, так и на выпускном распределительных валах, что позволяет больше перекрываются, следовательно, более высокая эффективность. Это объясняет, почему BMW M3 3.2 (100 л.с./литр) более эффективен, чем его предшественник M3 3.0 (95 л.с./литр), чей VVT ограничивается впускными клапанами.

В E46 3-й серии, двойной Vanos сдвиг впуска распредвала в максимальном диапазоне 40 .Распредвал выпускных клапанов 25.

 

Преимущество:

Дешево и простой, непрерывный VVT улучшает передачу крутящего момента на всех оборотах спектр.

Недостаток:

Отсутствие переменной высоты подъема и переменной продолжительности открытия клапана, таким образом, меньшая максимальная мощность чем кулачковый VVT.

Кто используй это ?

Большинство производители автомобилей, такие как: 

Audi V8 — впускной, 2-ступенчатый дискретный

BMW Double Vanos — впускной и выпускной, сплошные

Феррари 360 Модена — выхлоп, 2-ступенчатый дискретный

Фиат (Альфа) СУПЕР ОГОНЬ — вход, 2-ступенчатый дискретный

Ford Puma 1.7 Zetec SE — впуск, 2-ступенчатый дискретный

Jaguar AJ-V6 и обновленный AJ-V8 — вход, проходной

Ламборгини Диабло СВ двигатель — впускной, 2-х ступенчатый дискретный

Porsche Variocam — впускной, 3-ступенчатый дискретный

Рено 2.0-литровый — вход, 2-ступенчатый дискретный

Тойота ВВТ-я — впускной, проходной

Volvo 4 / 5 / 6-цилиндровый модульные двигатели — впускные, непрерывные

По рисунку легко понять его работу. Конец распределительный вал имеет зубчатую резьбу. Резьба соединена колпачком, который может двигаться к распределительному валу и от него. Потому что резьба шестерни не в параллельно оси распределительного вала, фазовый угол сдвинется вперед, если крышка толкнул в сторону распределительного вала.Аналогично, стянув крышку с распределительного вала приводит к смещению фазового угла назад.

ли толчок или тяга определяется гидравлическим давлением. Есть 2 камеры рядом с крышкой и заполнены жидкостью (эти камеры на картинке окрашены в зеленый и желтый цвета соответственно) Тонкий поршень отделяет эти 2 камеры, первая жестко крепится к крышке. Жидкость попадает в камеры через электромагнитные клапаны, которые контролируют гидравлическое давление воздействуя на какие камеры.Например, если система управления двигателем сигнализирует клапан в зеленой камере открыт, тогда гидравлическое давление воздействует на тонкий поршень и протолкните последний вместе с крышкой к распределительному валу, таким образом сдвиг фазового угла вперед.

Непрерывный изменение времени легко реализуется путем размещения крышки в подходящем месте. расстояние в зависимости от оборотов двигателя.
 

 


Макрос иллюстрация фазирующего привода  

 

VVT-i Тойоты (Изменение фаз газораспределения — интеллектуальное) распространяется на все больше и больше его модели, от крошечного Yaris (Vitz) к Супре.Его механизм более или менее такой же, как у BMW Vanos, это также бесступенчатая конструкция.

Однако, слово «Интегиллент» подчеркивает умный программа управления. Он не только изменяет синхронизацию в зависимости от частоты вращения двигателя, но и рассмотрите другие условия, такие как ускорение, движение вверх или вниз по склону.

 

3) Замена кулачка + Распредвал VVT

Комбинация VVT с переключением кулачков и VVT с фазировкой кулачков может удовлетворить требование как максимальной мощности, так и гибкости на протяжении всего оборота диапазон, но он неизбежно сложнее.На момент написания только Toyota и Porsche такие конструкции. Однако я верю, что в будущем все больше и больше спортивных автомобилей будут принять этот вид VVT.

 

 

 

 

 

 

 

 

Тойоты ВВТЛ-и является самой сложной конструкцией VVT. Его мощные функции включают в себя:
 

    • Непрерывный регулировка фаз газораспределения
    • 2-ступенчатая переменная подъем клапана плюс продолжительность открытия клапана
    • Применяется к обоим впускные и выпускные клапаны

 
Система может быть рассматривается как комбинация существующих VVT-i и Хонды VTEC, хотя механизм регулируемого подъема отличается от Хонда.

Нравится VVT-i, система изменения фаз газораспределения реализована сдвиг фазы всего распределительного вала вперед или назад с помощью гидропривод прикреплен к концу распределительного вала. Время рассчитывается системой управления двигателем с частотой вращения двигателя, ускорением, подъем в гору или спуск и т.п. принимая во внимание. Более того, изменение является непрерывным в широком диапазоне до 60, поэтому переменная синхронизация сама по себе, пожалуй, самая совершенная конструкция на сегодняшний день.

Что делает VVTL-i превосходным по сравнению с обычным VVT-i буквой «L», что означает подъем (подъем клапана). как все знают. Давайте посмотрим на следующую иллюстрацию:

Как и VTEC, система Toyota использует один коромысло. толкатель для приведения в действие обоих впускных клапанов (или выпускных клапанов). Так же есть 2 камеры лепестки, действующие на этот толкатель коромысла, лепестки имеют различный профиль — один с более длительным профилем открытия клапана (для высокой скорости), другой с более короткая продолжительность открытия клапана (для низкой скорости).На малой скорости медленно кулачок приводит в действие толкатель коромысла через роликовый подшипник (для уменьшения трения). Высокоскоростной кулачок не оказывает никакого влияния на толкатель коромысла, потому что под его гидравлическим толкателем достаточно места.

< Плоский крутящий момент выход (синяя кривая)

Когда скорость увеличилась до пороговой точки, скользящий штифт толкается гидравлическое давление для заполнения пространства. Высокоскоростной кулачок становится эффективным.Обратите внимание, что быстрый кулачок обеспечивает более продолжительное открытие клапана, в то время как скользящий штифт добавляет подъем клапана. (для Honda VTEC и продолжительность, и подъемная сила равны реализуется кулачками)

Очевидно, переменная продолжительность открытия клапана представляет собой двухступенчатую конструкцию, в отличие от непрерывной конструкции Rover VVC. Однако ВВТЛ-и предлагает регулируемый подъем, который значительно увеличивает выходную мощность на высоких скоростях. Сравнивать с Honda VTEC и аналогичными конструкциями для Mitsubishi и Nissan, система Toyota имеет бесступенчатую регулировку фазы газораспределения, что помогает ему достичь гораздо лучших низких и средних скоростей гибкость.Поэтому это несомненно лучший ВВТ на сегодняшний день. Тем не менее, это также более сложный и, вероятно, более дорогой в строительстве.

 

Преимущество:

Непрерывный VVT улучшает передачу крутящего момента во всем диапазоне оборотов; Переменный подъем и продолжительность подъема высокая мощность оборотов.

Недостаток:

Подробнее сложный и дорогой

Кто используй это ?

Тойота Селика ГТ-С

 

Variocam Plus использует гидравлический фазирующий привод и регулируемые толкатели

Variocam 911 Carrera

использует цепь привода ГРМ для

кулачковая фазировка.

 
Porsches Variocam Plus, как говорят, был разработан на основе Variocam, который обслуживает Carrera. и Бокстер. Однако я нашел их механизмы практически ничем не делятся. Variocam был первым представлен на модели 968 в 1991 году. В нем использовалась синхронизирующая цепь для изменения фазового угла распределительного вала, таким образом обеспечивается 3-ступенчатая регулировка фаз газораспределения. 996 Каррера и Boxster также используют ту же систему. Этот дизайн уникален и запатентован, но фактически уступает гидроприводу, предпочитаемому другими автопроизводителями, тем более не позволяет столько же изменений фазового угла.

Следовательно, наконец, Variocam Plus, используемый в новом 911 Turbo Follow использует популярный гидравлический привод вместо цепи. Один известный Эксперт Porsche назвал изменение фаз газораспределения непрерывным, но, похоже, противоречащее официальному заявлению, сделанному ранее, в котором раскрывалась система имеет 2-ступенчатые фазы газораспределения.

Однако, самым влиятельным изменением «Плюса» является добавление регулируемый подъем клапана. Это реализуется с помощью регулируемых гидрокомпенсаторов.Так как как показано на рисунке, каждый клапан обслуживается тремя кулачками — центральный имеет явно меньший подъем (всего 3 мм) и более короткая продолжительность открытия клапана. В Другими словами, это «медленная» камера. Два внешних кулачка точно такой же, с быстрым таймингом и высоким подъемом (10 мм). Выбор камеры лепестков производится регулируемым толкателем, который на самом деле состоит из внутреннего толкатель и внешний (кольцевой) толкатель. Они могли быть сцеплены вместе штифт с гидравлическим приводом, проходящий через них.Таким образом, «быстро» Кулачки кулачка приводят в действие клапан, обеспечивая высокий подъем и продолжительное открытие. Если толкатели не зафиксированы вместе, клапан будет приводиться в действие «медленный» кулачок через внутренний толкатель. Внешний толкатель будет двигаться независимо от толкателя клапана.

Как видно, механизм регулируемого подъема необычайно прост и компактен. То регулируемые толкатели лишь немного тяжелее обычных толкателей и зацепляются почти не осталось места.

Тем не менее, на данный момент Variocam Plus предлагается только для впускные клапаны.

 

Преимущество:

ВВТ улучшает передачу крутящего момента на низкой/средней скорости; Переменный подъем и продолжительность поднимите высокую мощность оборотов.

Недостаток:

Подробнее сложный и дорогой

Кто используй это ?

Порше 911 Турбо

 

4) Уникальный вездеход Система ВВК

Rover представил собственные системные вызовы VVC (Variable Valve Control) в MGF. в 1995 году.Многие эксперты считают его лучшим VVT, учитывая его всесторонность. способность — в отличие от VVT с переключением кулачков, он обеспечивает бесступенчатую регулировку фаз газораспределения, таким образом улучшить подачу крутящего момента на низких и средних оборотах; и в отличие от VVT с фазировкой кулачка, это может удлинить продолжительность открытия клапанов (и непрерывно), тем самым повысить власть.

В принципе, VVC использует эксцентриковый вращающийся диск для привода впускных клапанов каждых двух цилиндр. Поскольку эксцентричная форма создает нелинейное вращение, открытие клапанов период может быть разным.Все еще не понимаете? ну любой умный механизм должен быть трудным для понимания. В противном случае Rover не будет единственным производителем автомобилей, использующим Это.

ВВЦ есть один недостаток: поскольку каждый отдельный механизм обслуживает 2 соседних цилиндра, Для двигателя V6 нужно 4 таких механизма, а это недешево. V8 тоже нужно 4 таких механизм. V12 установить невозможно, так как недостаточно места для установите эксцентриковый диск и ведущие шестерни между цилиндрами.
 

 

 

 

Преимущество:

Постоянно изменяемое время и продолжительность открытия обеспечивают как управляемость, так и высокую мощность скорости.

Недостаток:

Нет в конечном итоге такой же мощный, как VVT с переключением кулачков, из-за отсутствия переменной поднимать; Дорого для V6 и V8; невозможно для V12.

Кто используй это ?

Ровер Двигатель 1.8 VVC для MGF, Caterham и Lotus Элиза 111С.

 

EGR (Рециркуляция отработавших газов) принятая технология для снижения выбросов и повышения эффективности использования топлива.Однако это это VVT, которые действительно используют весь потенциал EGR.

В теории, необходимо максимальное перекрытие между впускными клапанами и выпускными клапанами открывается всякий раз, когда двигатель работает на высокой скорости. Однако, когда автомобиль работает на средней скорости по шоссе, другими словами, двигатель работает на небольшая нагрузка, максимальное перекрытие может быть полезным для уменьшения расхода топлива расход и выброс. Поскольку выпускные клапаны не закрываются до тех пор, пока впускные клапаны были открыты какое-то время, часть выхлопных газов рециркулирует обратно в цилиндр одновременно с впрыскивается новая топливно-воздушная смесь.В составе топливно-воздушной смеси заменяется выхлопных газов, требуется меньше топлива. Поскольку выхлопные газы состоят в основном из негорючий газ, такой как CO2, двигатель нормально работает на обедненной топливной смеси / воздушной смеси, не препятствуя воспламенению.

 

 

Что такое регулировка фаз газораспределения и как она на самом деле работает?

 VVT означает изменение фаз газораспределения:

.

Попробуем для начала понять, зачем менять фазы газораспределения/VVT?

Во-первых, сначала прочтите здесь, что такое «Фазы газораспределения двигателя»? Автомобильный двигатель на самом деле «дышит» (вдыхает/выдыхает) через свои клапаны, как это делают люди.Скорость, с которой люди дышат, в основном зависит от работы, выполняемой людьми. Например, если человек/лица сидят или спят, они будут дышать медленнее, чем при ходьбе или беге. Кроме того, при выполнении таких действий, как плавание или поднятие тяжестей, людям также необходимо открывать рот, чтобы получить больше воздуха.

Это связано с тем, что когда человеческое тело подвергается тяжелой работе, увеличивается потребность во вдыхаемом воздухе. Таким образом, это вызывает более быстрое дыхание и/или более широкое открывание рта, чтобы получить больше воздуха.Точно так же, когда двигатель работает на высокой скорости; ему нужно открывать впускные клапаны раньше, быстрее и на более длительный период. Это связано с тем, что для выработки большей мощности ему необходимо всасывать больше воздушно-топливной смеси (заряда) для сжигания.

В старых обычных двигателях время, в течение которого клапаны оставались открытыми, было оптимизировано только для одной частоты вращения двигателя. Однако по мере увеличения оборотов двигателя время, необходимое для полного заполнения цилиндров, значительно сокращается. В результате двигатель получает меньше заряда (воздушно-топливной смеси), что приводит к потере мощности, особенно при работе двигателя на высоких оборотах. скорость.

Чтобы преодолеть этот недостаток, инженеры разработали механизм VVT или «Variable Valve Timing». VVT изменяет время открытия и закрытия клапанов для разных скоростей двигателя. На высокой скорости впускные клапаны открываются гораздо раньше, так что в цилиндры поступает больше воздушно-топливной смеси или «заряда». Это помогает увеличить дыхание двигателя, что также в значительной степени улучшает его «объемный КПД».

Как работает ВВТ?

Система изменения фаз газораспределения дополнительно оптимизирует время открытия и закрытия клапанов для разных скоростей двигателя.В конструкции VVT первого поколения используется двухступенчатая вариация, которая оптимизирует двигатель для двух разных скоростей. Эта конструкция позволяет использовать два различных набора таймингов, которые включают один для режима «частичной нагрузки», т. е. до 3500 об/мин, и другой для режима «полной нагрузки», т. е. выше 3500 об/мин. Кроме того, VVT чаще повышает производительность и снижает выбросы. Кроме того, VVT также предлагает лучшее из обоих миров. Таким образом, он обеспечивает плавный холостой ход на низких оборотах и ​​максимальную мощность на высоких оборотах.

Диаграмма изменения фаз газораспределения

Кроме того, в конструкции VVT нового поколения реализована система непрерывного изменения фаз газораспределения или CVVT.Кроме того, CVVT непрерывно (или бесконечно) изменяет фазы газораспределения, которые управляются электронным блоком управления двигателем. Кроме того, он оптимизирует фазы газораспределения для всех скоростей двигателя и условий. Хотя существуют различные механизмы для достижения вариации, в основном это достигается с помощью «распределительного вала с регулируемой синхронизацией» и электромагнитных клапанов.

Кроме того, в CVVT используется гибкая гидравлическая связь между распределительным валом и его звездочкой. Он управляется давлением моторного масла и электромагнитным клапаном контроля масла, который управляется ЭБУ двигателя.Кроме того, он перемещает распределительный вал вперед и опережает момент открытия впускных клапанов. В некоторых более продвинутых конструкциях используются «двойные» системы, которые представляют собой «Dual VVTi» — по одной для независимого изменения фаз впускного и выпускного клапанов.

Двойной двигатель VVTi (изображение предоставлено Toyota)

Что такое VVL/VVEL/VVTL?

Термин VVL означает « Переменный подъем клапана », тогда как VVEL означает « Переменное событие клапана и подъем ». Термин VVTL расшифровывается как « Variable Valve Timing and Lift », который представляет собой усовершенствованную вспомогательную систему для изменения «подъема» клапанов.В настоящее время система «VVL» все чаще используется в сочетании с системами «Variable Valve Timing» (VVT) для повышения производительности.

Кроме того, эта конструкция также изменяет подъем (или ход) впускных клапанов вместе с фазами газораспределения в зависимости от частоты вращения двигателя. Таким образом, он облегчает « низкий подъем » впускных клапанов на холостом ходу или на малых скоростях и « высокий подъем » на высоких скоростях. Кроме того, он обеспечивает точное управление клапанами при открытии/закрытии. Кроме того, чтобы соответствовать более строгим нормам выбросов, производители разработали множество других вспомогательных систем.Это электромеханические или электрогидравлические толкатели клапанов, бескулачковые системы клапанов и т. д.

VVL: Диаграмма регулируемого подъема клапана

Кроме того, разные производители используют специальные аббревиатуры для своих систем VVT, а именно:

Акронимы

СЛ. Акроним

Полная форма

Компания

1 CVVT

Непрерывная регулировка фаз газораспределения

Рено

2 CVVT

Непрерывная регулировка фаз газораспределения

Вольво

3 ВКТ

Переменная синхронизация кулачка

Форд

4 ВВТ

Регулировка фаз газораспределения

Сузуки

5 ВВТ

Регулировка фаз газораспределения

Фольксваген

6 ДЦВКП

Двойная непрерывная переменная фазировка кулачка

ГМ

7 ВВТи

Система изменения фаз газораспределения (интеллектуальная)

Тойота

8 ВТВТ

Переменная синхронизация и клапанный механизм

Хендай

9 N-VCT

Nissan-Variable Cam Timing

Ниссан

10 С-ВТ

Последовательная синхронизация клапанов

Мазда

11 МИВЕК

Инновационное электронное управление фаз газораспределения Mitsubishi

Мицубиси

12 i-VTEC

Интеллектуальное электронное управление фаз газораспределения и подъема клапана

Хонда, Акура

13 Камтроник

Мерседес Бенц

14 ВАНОС

Переменный Nockenwellensteuerung

БМВ

15 Клапанный подъемник

Ауди

16 ВариоКам

Порше

Кроме того, посмотрите анимацию Honda i-vtec здесь:

Подробнее: Что такое фазы газораспределения двигателя?>>

Как работает система изменения фаз газораспределения

Изображение: Изображение предоставлено под изображением

Новые автомобили сбивают с толку.Со всеми компьютерами, датчиками и гаджетами может показаться, что под капотом происходит какое-то магическое колдовство. Мы здесь, чтобы показать вам, как работают современные автомобильные компьютерные системы управления. В прошлый раз мы рассмотрели электронное управление дроссельной заслонкой. Сегодняшняя тема: Изменение фаз газораспределения.

Когда-то впускные и выпускные клапаны автомобиля открывались на определенную величину в определенный момент четырехтактного цикла и на определенное время. Это было так просто. Однако в настоящее время многие двигатели могут изменять не только время открытия их клапанов, но и то, насколько они открываются и как долго, то есть новые автомобили могут изменять фазы газораспределения, подъем клапана и продолжительность работы клапана.Давайте посмотрим, как все это работает. Для многих из вас это обзор, но если мы хотим, чтобы новое поколение автолюбителей заботилось о машинах, не мешало бы объяснить, как они на самом деле работают.

РЕГУЛИРУЕМАЯ ФУНКЦИЯ КЛАПАНА

Изображение: Изображение предоставлено ниже изображения

Диаграмма из Wikimedia Commons

Типичный впускной и выпускной клапаны двигателя открываются через выступы на распределительном валу. В двигателях с двумя верхними распредвалами имеются отдельные распределительные валы для выпускных и впускных клапанов.Эти распределительные валы изготовлены из закаленного железа или стали и соединены с коленчатым валом с помощью зубчатых ремней, цепей или шестерен. Поскольку современные бензиновые двигатели включают четырехтактный цикл, это означает, что распределительные валы вращаются один раз за каждые два оборота коленчатого вала. Чтобы усилить этот момент, рассмотрим ход впуска двигателя. Впускной клапан открыт, это означает, что выступ распределительного вала давит на толкатель кулачка и открывает клапан. Давайте проследим движение этого кулачка и сравним его с движением коленчатого вала.

Пока впускной клапан открыт, поршень движется вниз к нижней мертвой точке. Когда двигатель достигает нижней мертвой точки, коленчатый вал поворачивается на 180 градусов. Затем поршень движется вверх, сжимая топливную смесь. Как только поршень достигает верхней мертвой точки, коленчатый вал совершает полный оборот. Затем свеча зажигания воспламеняет топливную смесь, отправляя поршень обратно в нижнюю мертвую точку. К этому моменту коленчатый вал сделал полтора полных оборота. Теперь выпускной клапан открывается, и поршень возвращается в верхнюю мертвую точку.Коленчатый вал сделал два полных оборота. Теперь, когда поршень находится примерно в верхней мертвой точке, выступ распределительного вала, за которым мы следим, возвращается в исходное положение и открывает впускной клапан, а поршень движется обратно вниз. Таким образом, после двух оборотов коленчатого вала распределительный вал провернулся один раз. Посмотрите эту гифку, чтобы увидеть все это в движении.

В 1960-х годах автопроизводители начали разрабатывать системы изменения фаз газораспределения, которые позволяли впускным и выпускным клапанам открываться раньше или позже в 4-тактном цикле.Цель состояла в том, чтобы улучшить объемный КПД, уменьшить выбросы NOx и уменьшить насосные потери. На сегодняшний день существует два основных типа изменения фаз газораспределения: фазирование кулачков и изменение фаз газораспределения. При изменении кулачка ECU выбирает другой профиль кулачка в зависимости от нагрузки и скорости двигателя, тогда как при фазировании кулачка исполнительный механизм вращает распределительный вал, изменяя фазовый угол. Существуют десятки способов изменения фаз газораспределения, подъема и продолжительности, поэтому мы просто рассмотрим VVT-i от Toyota и VTEC от Honda.

Прежде чем мы рассмотрим VVT-i, поговорим о датчиках. В системах VVT используются всевозможные датчики, но наиболее важными из них являются датчики положения распределительного вала и коленчатого вала (которые часто являются датчиками на эффекте Холла). ЭБУ использует эти датчики для контроля взаимосвязи между положением поршня и положением клапанов. Коленчатый вал соединен со штоком и поршнем, а выступы распределительного вала вызывают события подъема клапана. Таким образом, с помощью информации от датчиков положения коленчатого и распределительного валов ЭБУ может узнать, как быстро вращается двигатель, и относительное положение поршня и впускных и выпускных клапанов.

Фазирование кулачка

Фазирование кулачка опережает или задерживает подъем клапана за счет поворота распределительного вала, как правило, в диапазоне около 60 градусов относительно угла поворота коленчатого вала. Допустим, наш впускной клапан нормально открывается за 5 градусов коленчатого вала до верхней мертвой точки и закрывается за 185 градусов коленчатого вала после верхней мертвой точки (5 градусов после нижней мертвой точки). «Запаздывание» фаз газораспределения на 10 градусов означает, что клапан открывается и закрывается на 10 градусов позже, то есть открывается на 5 градусов после ВМТ и закрывается на 195 градусов после ВМТ.Задерживая синхронизацию распределительного вала, двигатель достигает лучшего крутящего момента на высоких оборотах, в то время как опережая синхронизацию впускного распредвала обеспечивает лучшую мощность на низких оборотах.

Существует множество различных методов изменения фаз газораспределения. Каждый производитель имеет свое название для своей системы VVT. Toyota использует VVT-i®, Honda использует VTEC®, Mitsubishi использует MIVEC®, и этот список можно продолжить. Давайте посмотрим, как работает система Toyota VVT-i.

Система VVT, показанная на видео выше, является разновидностью Toyota VVT-i, хотя у Honda есть похожая система под названием VTC.В этой системе ECU получает сигналы от датчика положения распределительного вала, датчика коленчатого вала, датчика температуры масла, датчика массового расхода воздуха (MAF) и датчика температуры охлаждающей жидкости двигателя и использует эту информацию для настройки выходного сигнала на клапан управления подачей масла. Этот клапан действует как гидравлический привод, вращая ротор (соединенный с распределительным валом) внутри корпуса, который соединен с коленчатым валом через цепь привода ГРМ. Как только ЭБУ изменил фазовый угол кулачка, ЭБУ продолжает получать входные данные от всех датчиков и постоянно регулирует подачу масла на ротор.Как и электронное управление дроссельной заслонкой, это система с замкнутым контуром, что означает, что разница между текущим фазовым углом распредвала и оптимальным углом распредвала является «сигналом ошибки», который отправляется в ЭБУ. Компьютер использует сигнал ошибки, чтобы отрегулировать его выходной сигнал для привода, чтобы получить фазовый угол распределительного вала, который должен быть.

Замена кулачка

Изображение: Изображение предоставлено ниже изображения

Другие системы VVT изменяют форму своих выступов распределительного вала, а не только фазовый угол распределительного вала относительно коленчатого вала.Изменение профиля кулачка влияет не только на подъем клапана (насколько далеко открывается клапан), но и на продолжительность работы клапана (как долго клапан остается открытым). На изображении выше показаны особенности кулачка распределительного вала, влияющие на подъем клапана и его продолжительность.

При более высоких оборотах двигателя многие системы VVT изменяются на более агрессивные (т. е. с большим подъемом и продолжительностью) профили кулачков. Некоторые системы с регулируемым подъемом клапана смещают распределительный вал в осевом направлении, так что кулачок с более высоким профилем входит в зацепление с толкателем кулачка, создавая больший подъем клапана.Другие, такие как Honda VTEC (yo), прикрепляют высокопрофильный коромысло к низкоскоростному коромыслу с помощью штифта с гидравлическим приводом. Более агрессивный выступ кулачка активирует этот высокопрофильный коромысло и обеспечивает больший подъем впускного клапана, пропуская больше воздуха в цилиндр.

Видео ниже, рассказчик которого странно похож на Ричарда Хаммонда, является отличным ресурсом для понимания двух разных типов систем VVT и показывает, как работает гидравлический привод системы VTEC Honda.

Top Photo Кредит: Тимитрий

Как они все работают?

Система изменения фаз газораспределения произвела революцию в двигателях внутреннего сгорания, прославившись благодаря легендам JDM 90-х годов. Но как самые известные варианты соотносятся друг с другом?

Двигатели внутреннего сгорания никогда не были такими эффективными с самого первого дня.Тепловой КПД составляет в среднем около 33 процентов, а остальная энергия, создаваемая комбинацией искры, топлива и кислорода, высвобождается в окружающую среду. Таким образом, любой способ заставить двигатель внутреннего сгорания производить мощность более эффективно был очень востребован, а изменение фаз газораспределения, возможно, является одним из наиболее эффективных решений.

Он позволяет изменять фазы газораспределения (момент открытия и закрытия каждого клапана в цикле двигателя), продолжительность клапана (как долго клапаны остаются открытыми) и высоту подъема клапана (насколько далеко открывается клапан).

Как вы знаете, впускной клапан в двигателе открывается, чтобы позволить воздушно-топливной смеси попасть в цилиндры, затем сжаться, сгореть и затем вытесниться из цилиндра через открытие выпускного клапана. Эти клапаны открываются коромыслами, которые приводятся в действие распределительным валом, используя кулачки, чтобы точно синхронизировать открытие и закрытие.

Alfa Romeo Spider 2000 стал первым серийным автомобилем с системой VVT.

К сожалению, стандартные распределительные валы обрабатываются таким образом, что клапаны открываются только в заданном направлении.И это проблема, потому что для максимальной эффективности клапаны должны открываться и закрываться по-разному в зависимости от оборотов двигателя, на которых совершает возвратно-поступательное движение.

Для высоких оборотов двигателя требуется небольшое опережение открытия впускного клапана, так как высокая скорость движения поршня может привести к нехватке воздуха, своевременно всасываемого в цилиндр. Следовательно, это опережающее открытие впускного клапана позволяет немного большему количеству кислорода поступать в цилиндр, чтобы повысить эффективность сгорания.

Таким образом, вместо того, чтобы найти компромисс между распределительным валом для низких оборотов двигателя и другим для высоких оборотов двигателя, была создана система изменения фаз газораспределения, которая с момента своего изобретения стала основой эффективности. Было несколько разных подходов к этой технологии, поэтому сначала давайте взглянем на самые известные из них.

VTEC (мемы)

Решение Honda

заключалось в замене кулачка с двумя разными профилями распределительного вала, которые можно было выбирать в зависимости от скорости двигателя.VTEC (электронное управление фаз газораспределения и подъема) гидравлически выбирает между кулачками с низким подъемом, когда двигатель вращается медленно, и кулачками с высоким подъемом, когда двигатель интенсивно работает в верхнем диапазоне оборотов. Таким образом, эта система позволяет одному профилю кулачка обеспечивать большую эффективность использования топлива на низких оборотах, а другому — более высокую выходную мощность при высоких оборотах двигателя, что делает двигатель Honda чрезвычайно универсальным.

524 КБ

Гидравлический переключатель управляется ЭБУ, который получает информацию о давлении масла, температуре двигателя, скорости автомобиля, температуре двигателя и частоте вращения двигателя.Затем он запрограммирован на выбор между двумя профилями кулачка с помощью соленоида, который посылает давление масла от определенного клапана, который затем заставляет стопорный штифт, наконец, перейти к выступам с высоким подъемом.

На этой диаграмме показано, как штифт входит в каждое коромысло и позволяет кулачку большего профиля вступать во владение.

Этот переход между профилями кулачков означал, что силовые установки Honda VTEC будут развивать свою пиковую мощность очень высоко в диапазоне оборотов после того, как система «включится».Несмотря на то, что он не производит такого импульса мощности, как турбокомпрессор, многие поклонники Honda всегда найдут, что сказать о всплеске мощности двигателя VTEC в последнюю минуту на пределе возможностей двигателя.

ВВТ-и

Система изменения фаз газораспределения Toyota пошла по пути использования кулачковых шестерен, чтобы изменить взаимосвязь между ремнем/цепью ГРМ и распределительным валом.Шестерня меньшего размера внутри кулачковой шестерни может вращаться под действием пружины, чтобы повернуть распределительный вал еще на несколько градусов, задерживая или ускоряя взаимодействие между зубьями шестерни и вращающейся цепью.

Этот формат известен как фазирование кулачка, поскольку внутренняя шестерня внутри кулачковой шестерни может влиять на фазовый угол распределительного вала, изменяя время, в которое кулачки взаимодействуют с соответствующими коромыслами. Эта технология была впервые реализована на двигателе 2JZ-GE и использовалась на знаменитой A80 Supra 3.0-литровый формат.

Ванос

Специально разработанная косозубая шестерня видна в центре кулачковой шестерни.

Vanos (или переменная Nockenwellensteuerung) — это вариант BMW с VVT, который впервые был представлен на двигателе M50 в 5-й серии 90-х годов.В нем также используется фазирование кулачка, но с косозубой шестерней внутри кулачковой шестерни, которая перемещается по направлению к распределительному валу или в противоположном направлении, изменяя угол лепестка. Это срабатывание контролируется DME (цифровой электронной системой управления двигателем), которая подает дополнительное давление масла для перемещения косозубой шестерни внутрь и наружу.

Как и в других системах, эта косозубая шестерня будет двигаться внутрь, открывая клапаны немного раньше, увеличивая количество воздуха, поступающего в цилиндр, и обеспечивая увеличение подачи мощности.Первоначально BMW представила одинарный Vanos, который изменял впускной распределительный вал только определенными шагами в диапазоне оборотов двигателя. Затем немецкая компания выпустила двойной Vanos, который представлял собой гораздо более продвинутую систему, которая влияла как на впускной, так и на выпускной распределительные валы, с регулировкой, которая также учитывала положение дроссельной заслонки. Двойной VANOS был изобретен как раз для двигателя S50B32, установленного в E36 M3 Алекса, а также в бесконечно крутом Z3 M Coupe и родстере.

Легендарный двигатель Rover серии K также оснащен системой VVT через систему Variable Valve Control (VVC).

Почти каждая автомобильная компания придумала свое название для системы VVT: у Rover была VVC, у Nissan — VVL, а у Ford — VCT.И это неудивительно, учитывая, что это одна из беспроигрышных ситуаций для инженеров. Вместо того, чтобы выбирать между кулачком с низким и высоким подъемом, автопроизводители внезапно смогли максимизировать эффективность использования топлива и выбросы, а также обеспечить максимальную отдачу мощности.

Учитывая потенциал управления пневматическим клапаном на горизонте, господство распределительного вала может закончиться в ближайшие годы. Но до того дня мощность Vanos, V-TEC и VVT-i будет по-прежнему заставлять поклонников хвастаться на каждой автомобильной встрече, которую вы посещаете.

Как работает двигатель VVTi? – Greedhead.net

Как работает двигатель VVTi?

Двигатель VVT-i увеличивает крутящий момент на низких и средних оборотах за счет предварительного управления закрытием впускного клапана на низких и средних оборотах. С увеличением оборотов двигателя время закрытия впускного клапана увеличивается, чтобы повысить выходную мощность.

Что такое двигатель VVTi?

Variable Valve Timing-Intelligence
VVT-i расшифровывается как Variable Valve Timing-Intelligence, название Toyota для технологии изменения фаз газораспределения, которую она использует в большинстве своих автомобилей.Некоторые системы с регулируемым клапаном также воздействуют на выпускные клапаны, которые открываются, чтобы выпустить топливно-воздушную смесь из двигателя.

На каких оборотах срабатывает VVTi?

Когда двигатель работает со скоростью выше 6000 об/мин, ЭБУ активирует реле давления масла, которое толкает скользящий штифт под толкателем на каждом коромысле. По сути, это переключается на высокий лепесток, вызывая большую подъемную силу и большую продолжительность.

Что такое VVTi в автомобиле Toyota?

VVT-i, или интеллектуальная система изменения фаз газораспределения, представляет собой автомобильную технологию изменения фаз газораспределения, разработанную Toyota.Система Toyota VVT-i заменяет Toyota VVT, предлагаемую начиная с 1991 года на 5-клапанном двигателе 4A-GE.

Экономит ли VVTi топливо?

Вы можете сэкономить до 30% топлива, управляя автомобилем с двигателем VVT-I по сравнению с автомобилем без VVT-i. По сравнению с обычным двигателем двигатель VVT-i может развивать больший крутящий момент при более низком диапазоне оборотов в минуту (об/мин) и большую мощность при более высоких оборотах, сохраняя при этом топливную эффективность и низкий уровень выбросов.

VVTi увеличивает мощность?

Благодаря системе изменения фаз газораспределения мощность и крутящий момент можно оптимизировать в широком диапазоне оборотов.Наиболее заметные результаты: двигатель может вращаться выше, что увеличивает пиковую мощность. Например, 2-литровый двигатель Nissan Neo VVL выдает пиковую мощность на 25% больше, чем его версия без VVT.

Есть ли у VVTi лифт?

Многие серийные системы VVT относятся к типу кулачкового фазирования с использованием устройства, известного как вариатор. Это позволяет непрерывно регулировать синхронизацию кулачка (хотя многие ранние системы использовали только дискретную регулировку), однако продолжительность и подъем нельзя регулировать.

Является ли VVTi дизельным двигателем?

Мощный 2.7 четырехцилиндровый бензиновый двигатель VVT-i (с интеллектуальным регулированием фаз газораспределения) или 2,5-литровый турбодизельный двигатель D-4D с промежуточным охлаждением Common Rail обеспечивают низкий расход топлива и снижение выбросов, обеспечивая приятное и экономичное вождение.

Как VVTi экономит топливо?

Экономия топлива с помощью автомобильной системы VVT-i

  1. Характеристики двигателя. По словам Кайинджи, первое, что нужно сделать, — это изучить характеристики своего двигателя.
  2. Советы по экономии топлива во время вождения.Двигайтесь с нормальной скоростью.
  3. Проверьте давление в шинах.
  4. Избегайте слишком большого веса.
  5. Выключить двигатель.
  6. Выключить переменный ток.

Какое масло лучше для двигателей VVTi?

Масло премиум-класса Helix Ultra 5W-30 Для тех, кто хочет максимальной заботы о двигателе своего автомобиля. Рекомендуется для Corolla 1.6 VVTi (P) (2002-) Это лучшее, что вы можете себе позволить в своем автомобиле TOYOTA.

Как работает VVTi?

VVTi танцует туда-сюда по мере необходимости в рамках своих рабочих параметров.VVT может иметь три рабочих состояния: ON, OFF и CONSTANT. Помните, что VVT включается и выключается стандартным ЭБУ, но вы можете обойти этот сигнал и включить его, когда вам захочется, выключить его или включить постоянно с любой точки оборотов.

Вам нужен двигатель VVTi с турбонаддувом?

Двигатель

Turbo’d VVTI — это то, что нужно, вы получаете потрясающую мощность от двигателей VVTI, если добавить принудительную индукцию, просто нужны люди, достаточно смелые, чтобы сделать это. Давайте посмотрим на ситуацию. Toyota VVT (переменная синхронизация клапанов) и VVT-i (переменная синхронизация клапанов с интеллектом).Обе системы не похожи на VTEC. Они не влияют на подъемную силу.

Что такое система Toyota VVT-i?

Система Toyota VVT-i заменяет систему Toyota VVT, которая предлагалась с 1991 года на двигателях 4A-GE с 5 клапанами на цилиндр. Система VVT представляет собой двухступенчатую систему фазовращателя с гидравлическим управлением.

Что означает VVT-iE?

Тип VVT-iE — цепной привод ГРМ, электрический механизм изменения фаз газораспределения на впуске и традиционный гидравлический VVT на выпуске. Применяется для двигателей серии UR (1UR-FSE, 2UR-FSE).Система VVT-iE (Variable Valve Timing — интеллектуальный электрический) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя.

Как работает VVT? – Rampfesthudson.com

Как работает VVT?

В основном, он изменяет фазы газораспределения, сдвигая фазовый угол распределительных валов. Например, на высокой скорости распредвал впускных клапанов будет поворачиваться на 30° вперед, чтобы обеспечить более ранний впуск. Это движение контролируется системой управления двигателем в соответствии с необходимостью и приводится в действие шестернями гидравлических клапанов.

Как работает VVT?

Двигатель VVT-i увеличивает крутящий момент на низких и средних оборотах за счет предварительного управления закрытием впускного клапана на низких и средних оборотах. С увеличением оборотов двигателя время закрытия впускного клапана увеличивается, чтобы повысить выходную мощность.

Как работает переменный подъем клапана?

Его движение приводится в движение распределительным валом через ряд компонентов. ВВЭЛ изменяет подъем клапана с помощью эксцентрикового управляющего вала внутри коромысла.При вращении эксцентрикового управляющего вала положение коромысла смещается, изменяя угол поворота кулачка. Угол поворота кулачка определяет степень подъема клапана.

Как регулируются фазы газораспределения?

Существует несколько методов изменения фаз газораспределения, таких как использование нескольких распределительных валов или полное устранение распределительного вала, изменение фаз газораспределения впускных клапанов и управление фазами газораспределения с помощью электронных, гидравлических или пневматических приводов.

Что такое технология VVT?

VVT-i расшифровывается как Variable Valve Timing-Intelligence, так Toyota называет технологию регулируемых клапанов, которую она использует в большинстве своих автомобилей.Некоторые системы с регулируемым клапаном также воздействуют на выпускные клапаны, которые открываются, чтобы выпустить топливно-воздушную смесь из двигателя.

Кто изобрел ВВТ?

Corliss Orville Burandt
Система изменения фаз газораспределения/Inventors

Является ли VVT-I 2JZ?

2JZ. 2JZ объемом 2997 куб. См (3,0 л; 182,9 куб. Дюйма) производится с 1991 года (впервые выпущен в Toyota Aristo 1991 года). Диаметр цилиндра и ход поршня составляют 86 мм × 86 мм (3,39 дюйма × 3,39 дюйма). Позднее в 1997 году для модели 1998 года была добавлена ​​система изменения фаз газораспределения VVT-i.

Как работает соленоид VVT?

Соленоид VVT работает с давлением масла, используя указания от ECU для изменения вращения распределительного вала. Соленоид изменяет поток масла в трубопроводе, ведущем к фазовращателю(ям) распределительного вала. Изменение давления на впуске будет использоваться компьютером трансмиссии для оптимизации подачи топлива в камеры сгорания.

Кто изобрел двигатель VVT?

Что такое Toyota VVTI?

Как работает VVT в двигателе?

Он управляется давлением моторного масла и электромагнитным клапаном контроля масла, который управляется ЭБУ двигателя.Кроме того, он перемещает распределительный вал вперед и опережает момент открытия впускных клапанов. В некоторых более продвинутых конструкциях используются «двойные» системы, которые представляют собой «Dual VVTi» — по одной для изменения фаз впускного и выпускного клапанов.

Что делает система изменения фаз газораспределения (VVT)?

Система изменения фаз газораспределения (VVT) используется для изменения характеристик и усовершенствований двигателя. В системах с двумя камерами PCM контролирует величину отклонения для обеих камер по отдельности. В системе два исполнительных механизма; один для выпускного кулачка и один для впускного кулачка.

Сколько времени занимает создание анимационного видео?

Создание привлекательных анимационных видеороликов теперь так же просто, как выбор вашего любимого персонажа, инфографики или эффекта, а затем редактирование текста. Начните прямо сейчас, и уже через пять минут вы увидите свое первое видео. Вы наверняка заметили, что все крупные бренды делают анимационные видеоролики. Они делают это по двум причинам.

Какое программное обеспечение лучше всего подходит для создания анимационных видеороликов?

Используйте Biteable, лучшее программное обеспечение для создания анимационных видео в Интернете, чтобы мгновенно создавать захватывающую анимацию онлайн.

Добавить комментарий

Ваш адрес email не будет опубликован.